This study presents a set of laboratory experiments to investigate the effect of Cutter Soil Mixing (CSM) method and curing pressures on the tensile strength of a soft clay treated with Air Cooled Blast Furnace Slag (ACBFS) and Industrial Hydrated Lime (IHL). High productivity, minimum vibration, using the in-situ soil as construction material, and high level of quality control are some of the main benefits of CSM method. Three different slurries containing various percentages of ACBFS and IHL were mixed with saturated soft clay due to CSM method to enhance its tensile strength and make it suitable for the construction of deep CSM panels. To simulate high pressure due to the self-weight of the deep CSM panels in the field, a number of high pressure curing devices were designed and built in the laboratory and used for 28 and 56 day pressurised curing of the treated samples. Then an indirect tensile strength test was performed on the treated samples to investigate the effect of mixing method, ACBFS-IHL content, curing pressure and curing time on the tensile strength of the treated material. Finally, X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analysis were conducted to investigate the microstructural and properties of the treated clay. The outcomes demonstrate that using CSM method and curing pressures along with ACBFS-IHL as a chemical stabiliser, increases the tensile strength of treated soft clay up to 35 times, which is significantly higher than the use of chemical stabiliser alone. Moreover, the microstructural analysis results revealed that the main hydration products in the clay treated with ACBFS-IHL is gismondine (C-A-S-H) which is also considered to be responsible for the higher tensile development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717147 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2019.e02186 | DOI Listing |
Cellulose (Lond)
December 2024
Vehicle Safety Institute, Graz University of Technology, Inffeldgasse 13/6, 8010 Graz, Austria.
This work deals with the strain-rate dependent characterization of paper under uniaxial tension at high strain-rates. Experiments were performed involving a Split Hopkinson bar for high strain-rate testing, comparing the results with conventional quasi-static tests. Tests were conducted in a strain-rate range between 0.
View Article and Find Full Text PDFSci Rep
January 2025
Finishing of Cellulose-based Fibres Department, National Research Centre, Pretreatment and Textile Research and Technology Institute, 33 El-Behouth St. (former El-Tahrir str.), Dokki, P.O. 12622, Giza, Egypt.
The study examined the use of cationic polymers (Polyethyleneimine and chitosan) in treating fabrics like cotton, wool, and cotton/wool (70/30) to improve their dyeability and printability. The study examined factors such as dye concentration, time, and temperature for the dyeing process. Results showed that all dyed and printed fabrics treated with polyethyleneimine and chitosan increased color strength by significant percentages.
View Article and Find Full Text PDFActa Biomater
January 2025
Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia. Electronic address:
Zinc (Zn)-based alloys and composites are anticipated to emerge as a category of degradable metallic biomaterials with exceptional prospects for bone-implant applications owing to their superior biocompatibility and biofunctionality. Unfortunately, the limited strength of Zn alloys in their as-cast state restricts their use in clinical applications. In this study, we started with pure magnesium (Mg) powders and Zn sheets, and successfully fabricated MgZn/Zn composites using accumulative roll bonding (ARB).
View Article and Find Full Text PDFRSC Adv
January 2025
Research Collaboration Center for Nanocellulose, BRIN-Andalas University Padang 25163 West Sumatera Indonesia.
This study investigates the development and characterization of a novel composite material consisting of polyvinyl alcohol (PVA) integrated with (UG) and zinc oxide (ZnO) as fillers. The synergistic effects of UG and ZnO were investigated, focusing on their ability to enhance the film's properties. UV-vis spectrophotometry demonstrated that the composite film effectively blocked all UV (UV-A and UV-B) and blue light wavelengths.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China. Electronic address:
Conductive organohydrogel fibers based on sodium alginate (SA) exhibit remarkable flexibility and electrical conductivity, making them ideal candidates for conformal skin adhesion and real-time monitoring of human activity signals. However, traditional conductive hydrogels often suffer from issues such as uneven distribution of conductive fillers, and achieving the integration of high mechanical strength, stretchability, and transparency using environmentally friendly methods remains a significant challenge. In this study, a novel and sustainable strategy was developed to fabricate dual-network organohydrogel fibers using sodium alginate as the primary material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!