The mechanism and gene markers of head and neck squamous cell carcinoma (HNSCC), a common malignant tumor, have not yet been identified. The aim of this study was to identify the key genes and pathways associated with HNSCC and to further analyze its molecular mechanism and prognostic significance. In this study, the expression profile chip data GSE6631 from Gene Expression Omnibus (GEO) included paired HNSCC tumor and normal samples from 22 patients; the RNAseq tertiary dataset of HNSCC and corresponding clinical information from The Cancer Genome Atlas (TCGA) included biological information of 12 normal head and neck tissues and 111 HNSCC sample tissues. Differentially expressed genes (DEGs) were screened by R software, and the pathway enrichment analysis of DEGs was performed by DAVID, String, and Sytoscape software programs. Combining the GEO and the TCGA databases, we used bioinformatics technology to screen out 50 DEGs in HNSCC and enrich the biological functions and key pathways of HNSCC. Then we performed Gene Ontology (GO) enrichment analysis, the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis, protein-protein interaction (PPI) analysis, and survival analysis on these DEGs. Using CMap, we identified candidate small molecules that might reverse HNSCC gene expression. Finally, four most important small molecules that could provide more reliable biomarkers for early diagnosis and individualized control of HNSCC were identified.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702813 | PMC |
http://dx.doi.org/10.1155/2019/7376034 | DOI Listing |
BMC Cancer
January 2025
Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
Background: Head and neck squamous cell carcinoma (HNSCC), a highly invasive malignancy with a poor prognosis, is one of the most common cancers globally. Circular RNAs (circRNAs) have become key regulators of human malignancies, but further studies are necessary to fully understand their functions and possible causes in HNSCC.
Methods: CircCCT2 expression levels in HNSCC tissues and cells were measured via qPCR.
J Assoc Res Otolaryngol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland.
Purpose: There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV).
Methods: We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL).
Atten Percept Psychophys
January 2025
School of Allied Health and Communicative Disorders, Northern Illinois University, DeKalb, IL, USA.
Speechreading-gathering speech information from talkers' faces-supports speech perception when speech acoustics are degraded. Benefitting from speechreading, however, requires listeners to visually fixate talkers during face-to-face interactions. The purpose of this study is to test the hypothesis that preschool-aged children allocate their eye gaze to a talker when speech acoustics are degraded.
View Article and Find Full Text PDFSupport Care Cancer
January 2025
Swallowing Center, Osaka University Hospital, 2-15, Yamadaoka, Suita City, Osaka, 565-0871, Japan.
Purpose: Chemoradiotherapy (CRT) for head and neck cancer (HNC) often causes dysphagia. The risk of dysphagia increases during CRT tends to become more severe after finishing CRT, and persists for a few weeks thereafter. Thus, understanding the changes in swallowing physiology during and immediately after CRT is essential.
View Article and Find Full Text PDFNat Med
January 2025
Department of Otolaryngology-Head & Neck Surgery and Clinical Ethics Service, Center for Bioethics and Social Sciences in Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!