Rotator cuff tears can be associated with significant shoulder dysfunction and pain. Despite improved surgical techniques and new materials for rotator cuff reconstruction, there is no significant reduction in the re-rupture rate. Innovative approaches for enhanced tendon healing are required. The potential of biologically optimized tendon integration has probably been insufficiently explored so far. The existing practice of debridement might eliminate repair tissue and a major source of cells and blood vessels necessary for tendon healing. Biological augmentation may be an option to improve the healing process. The subacromial bursa is a highly proliferative tissue with mesenchymal stem cells capable of differentiating into various cell lines and is easily accessible during rotator cuff repair. We describe the technique of bursal augmentation in arthroscopic double-row SutureBridge repair of a posterosuperior rotator cuff tear with the aim of improving tendon-to-bone healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6714060 | PMC |
http://dx.doi.org/10.1016/j.eats.2019.03.010 | DOI Listing |
Jpn J Radiol
January 2025
Artificial Intelligence and Translational Imaging (ATI) Lab, Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece.
Objective: Calcific tendinopathy, predominantly affecting rotator cuff tendons, leads to significant pain and tendon degeneration. Although US-guided percutaneous irrigation (US-PICT) is an effective treatment for this condition, prediction of patient' s response and long-term outcomes remains a challenge. This study introduces a novel radiomics-based model to forecast patient outcomes, addressing a gap in the current predictive methodologies.
View Article and Find Full Text PDFCurr Sports Med Rep
January 2025
Nellis Family Medicine Residency Program, Nellis Air Force Base, Las Vegas, NV.
Am J Sports Med
January 2025
Department of Sports Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Background: Arthroscopic repair with the biceps rerouting (BR) technique has been determined to lead to promising clinical and biomechanical outcomes for treating large-to-massive rotator cuff tears (LMRCTs). However, the in vivo effects of BR on glenohumeral kinematics during functional shoulder movements have not been fully elucidated.
Purpose: To investigate whether BR provides a better restoration of shoulder kinematics compared with conventional rotator cuff repair (RCR).
Am J Sports Med
January 2025
Sports Medicine Center, Department of Orthopaedic Surgery/Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Background: Traditional superior capsular reconstruction (SCR) with biceps tendon transposition (TB) alone for irreparable massive rotator cuff tears (IMRCTs) has demonstrated a high retear rate, highlighting the need for alternative approaches. Therefore, SCR using a peroneus longus tendon graft (PLG) combined with TB (PLG-TB) should be clinically studied.
Purpose: To compare the clinical and radiological outcomes of SCR using the PLG-TB technique versus the TB technique alone for IMRCT.
Am J Sports Med
January 2025
Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, P.R. China.
Background: For patients with osteoporosis and rotator cuff tears, there is still no consensus on current treatment methods. The material, structure, and number of anchors have important effects on the repair outcome.
Purpose: To investigate the use of chitosan quaternary ammonium salt-coated nickel-titanium memory alloy (NTMA) anchors to treat rotator cuff injury in shoulders with osteoporosis in a rabbit osteoporosis model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!