We demonstrate excitation of photosensitisers (PSs) by accelerated protons to produce fluorescence and singlet oxygen. Their fluorescence follows a pattern similar to the proton energy loss in matter, while proton-derived fluorescence spectra match the photon-induced spectra. PSs excited in dry gelatin exhibit enhanced phosphorescence, suggesting an efficient PSs triplet state population. Singlet oxygen measurements, both optically at ~1270 nm and through the photoproduct of protoporphyrin IX (PpIX), demonstrate cytotoxic singlet oxygen generation by proton excitation. The singlet oxygen-specific scavenger 1,4-diazabicyclo[2.2.2]octane (DABCO) abrogates the photoproduct formation under proton excitation, but cannot countermand the overall loss of PpIX fluorescence. Furthermore, in two cell lines, M059K and T98G, we observe differential cell death upon the addition of the PS cercosporin, while in U87 cells we see no effect at any proton irradiation dose. Our results pave the way for a novel treatment combining proton therapy and "proton-dynamic therapy" for more efficient tumour eradication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726622 | PMC |
http://dx.doi.org/10.1038/s41467-019-12042-7 | DOI Listing |
Small
January 2025
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.
Direct electrochemical detection of miRNA biomarkers in tumor tissue interstitial fluid (TIF) holds great promise for adjuvant therapy for tumors in the perioperative period, yet is limited by background interference and weak signal. Herein, a wash-free and separation-free miRNA biosensor based on photoexcited electro-driven reactive oxygen channeling analysis (LEOCA) is developed to solve the high-fidelity detection in physiological samples. In the presence of miRNA, nanoacceptors (ultrasmall-size polydopamine, uPDA) are responsively assembled on the surface of nanodonors (zirconium metal-organic framework, ZrMOF) to form core-satellite aggregates.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany.
Hybrid hydrogels are promising for wound dressing, tissue engineering, and drug delivery due to their exceptional biocompatibility and mechanical stability. This study synthesized hybrid hydrogels for photodynamic therapy using electron beam-initiated polymerization with varying PEGDA/gelatin ratios and irradiation doses to evaluate their effectiveness as uptake and release systems for five photosensitizers. Toluidine blue, O (TBO); methylene blue (MB); eosin, Y; indocyanine, green; and sodium meso-tetraphenylporphine-4,4',4″,4‴-tetrasulfonate were studied for their uptake and release dynamics in relation to their structural properties and the hydrogels' composition.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
Complex organic molecules are widespread in different areas of the interstellar medium, including cold areas, such as molecular clouds, where chemical reactions occur in ice. Among the observed molecules are oxygen-bearing organic molecules, which are of high interest given their significant role in astrobiology. Despite the observed rich chemistry, the underlying molecular mechanisms responsible for molecular formation in such cold dilute areas are still not fully understood.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150 Haping Road, Harbin, Heilongjiang Province 150081, China.
: To assess the anticancer effect of microbubbles (MBs) in combination with sinoporphyrin sodium (DVDMS)-mediated sonodynamic therapy (SDT) for the in vitro and in vivo treatment of hepatocellular carcinoma (HCC). : HepG2 cells were used for in vitro experiments. Reactive oxygen species (ROS) production was detected using 2',7'-dichlorodihydrofluorescein diacetate and singlet oxygen sensor green in vitro and in solution, respectively.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China.
Cobalt-based metal-organic framework (MOFs)-derived catalysts are acknowledged for their effectiveness in activating peroxymonosulfate (PMS) for the treatment of persistent pollutants. However, the limited adsorption of PMS on the catalyst surface markedly reduces its degradation efficiency. To overcome this limitation, nanoflower-like EuO/CoO-0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!