Research shows that rats and humans on a high-fat diet (HFD) are less sensitive to satiety signals known to act via vagal afferent pathways. We hypothesize that HFD causes an upregulation of 2-pore domain potassium channels, resulting in hyperpolarization of nodose ganglia (NG) and decreased vagal response to satiety signals, which contribute to hyperphagia. We show that a 2-week HFD caused an upregulation of 2-pore domain TWIK-related spinal cord K+ (TRESK) and TWIK-related acid-sensitive K+ 1 (TASK1) channels by 330% ± 50% and 60% ± 20%, respectively, in NG. Patch-clamp studies of isolated NG neurons demonstrated a decrease in excitability. In vivo single-unit NG recordings showed that a 2-week HFD led to a 55% reduction in firing frequency in response to CCK-8 or leptin stimulation. NG electroporation with TRESK siRNA restored NG responsiveness to CCK-8 and leptin. Rats fed a 2-week HFD consumed ~40% more calories compared with controls. Silencing NG TRESK but not TASK1 channel expression in HFD-fed rats restored normal calorie consumption. In conclusion, HFD caused upregulation of TRESK channels, resulting in NG hyperpolarization and decreased vagal responsiveness to satiety signals. This finding provides a pharmacological target to prevent or treat HFD-induced hyperphagia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777907 | PMC |
http://dx.doi.org/10.1172/jci.insight.130402 | DOI Listing |
Exp Neurol
November 2022
Laboratorio de Estudios Neurobiologicos (LABENE), Instituto de Histologia y Embriologia de Mendoza (IHEM-CONICET), Facultad de Ciencias Medicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina. Electronic address:
TREK2 is a member of the 2-pore domain family of K+ channels (K2P) preferentially expressed by unmyelinated, slow-conducting and non-peptidergic isolectin B4-binding (IB4+) primary sensory neurons of the dorsal root ganglia (DRG). IB4+ neurons depend on the glial-derived neurotrophic factor (GDNF) family of ligands (GFL's) to maintain their phenotype. In our previous work, we demonstrated that 7 days after spinal nerve axotomy (SNA) of the L5 DRG, TREK2 moves away from the cell membrane resulting in a more depolarised resting membrane potential (Em).
View Article and Find Full Text PDFJ Clin Invest
October 2020
The tight junction protein claudin-2 is upregulated in inflammatory bowel disease, and yet its deficit worsens infectious and chemical colitis. In this issue of the JCI, Raju and Shashikanth et al. examined the contribution of claudin-2 to immune-mediated colitis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!