Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rapid advances in genomic technologies have led to a wealth of diverse data, from which novel discoveries can be gleaned through the application of robust statistical and computational methods. Here, we describe GeneFishing, a semisupervised computational approach to reconstruct context-specific portraits of biological processes by leveraging gene-gene coexpression information. GeneFishing incorporates multiple high-dimensional statistical ideas, including dimensionality reduction, clustering, subsampling, and results aggregation, to produce robust results. To illustrate the power of our method, we applied it using 21 genes involved in cholesterol metabolism as "bait" to "fish out" (or identify) genes not previously identified as being connected to cholesterol metabolism. Using simulation and real datasets, we found that the results obtained through GeneFishing were more interesting for our study than those provided by related gene prioritization methods. In particular, application of GeneFishing to the GTEx liver RNA sequencing (RNAseq) data not only reidentified many known cholesterol-related genes, but also pointed to glyoxalase I () as a gene implicated in cholesterol metabolism. In a follow-up experiment, we found that knockdown in human hepatoma cell lines increased levels of cellular cholesterol ester, validating a role for in cholesterol metabolism. In addition, we performed pantissue analysis by applying GeneFishing on various tissues and identified many potential tissue-specific cholesterol metabolism-related genes. GeneFishing appears to be a powerful tool for identifying related components of complex biological systems and may be used across a wide range of applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754596 | PMC |
http://dx.doi.org/10.1073/pnas.1820340116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!