The imaging workup in acute stroke can be simplified by deriving non-contrast CT (NCCT) from CT perfusion (CTP) images. This results in reduced workup time and radiation dose. To achieve this, we present a stacked bidirectional convolutional LSTM (C-LSTM) network to predict 3D volumes from 4D spatiotemporal data. Several parameterizations of the C-LSTM network were trained on a set of 17 CTP-NCCT pairs to learn to derive a NCCT from CTP and were subsequently quantitatively evaluated on a separate cohort of 16 cases. The results show that the C-LSTM network clearly outperforms the baseline and competitive convolutional neural network methods. We show good scalability and performance of the method by continued training and testing on an independent dataset which includes pathology of 80 and 83 CTP-NCCT pairs, respectively. C-LSTM is, therefore, a promising general deep learning approach to learn from high-dimensional spatiotemporal medical images.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2019.2939044DOI Listing

Publication Analysis

Top Keywords

c-lstm network
12
stacked bidirectional
8
bidirectional convolutional
8
deriving non-contrast
8
ctp-ncct pairs
8
convolutional lstms
4
lstms deriving
4
non-contrast spatiotemporal
4
spatiotemporal imaging
4
imaging workup
4

Similar Publications

Through the advancement of the contemporary web and the rapid adoption of social media platforms such as YouTube, Twitter, and Facebook, for example, life has become much easier when dealing with certain highly personal problems. The far-reaching consequences of online harassment require immediate preventative steps to safeguard psychological wellness and scholarly achievement via detection at an earlier stage. This piece of writing aims to eliminate online harassment and create a criticism-free online environment.

View Article and Find Full Text PDF

In this work, a low-complexity data-driven characterized-long-short-term-memory (C-LSTM)-aided channel modeling technique is proposed for optical single-mode fiber (SMF) communications. To fully utilize the sequence correlation learning ability of traditional long short-term memory (LSTM) networks and solve the gradient explosion problem, the feature information is introduced into the traditional LSTM input layer to better characterize the intersymbol interference caused by dispersion in SMF modeling. The simulation results show that the proposed C-LSTM can effectively alleviate the gradient explosion problem with a stable and ultimately lower mean square error (MSE) than traditional LSTM.

View Article and Find Full Text PDF

A study on optimization of delayed production mode of iron and steel enterprises based on data mining.

PLoS One

January 2023

Institute of Public Health & Emergency Management, Taizhou University, Taizhou, Zhejiang, China.

Delayed production mode has been adopted by an increasing number of process production enterprises as a method to realize mass customization of multi-products. This paper used the convolutional neural network-long short-term memory artificial neural network algorithm (C-LSTM) in data mining technology to analyze and determine factors that have an impact on delayed production mode in the internal and external production and operation of enterprises. Combined with the actual production situation of iron and steel enterprises, a quantitative model of the delayed production was constructed.

View Article and Find Full Text PDF

A novel heart sound segmentation algorithm via multi-feature input and neural network with attention mechanism.

Biomed Phys Eng Express

December 2022

School of Information Science and Technology, Yunnan University, Kunming 650504, People's Republic of China.

. Heart sound segmentation (HSS), which aims to identify the exact positions of the first heart sound(S1), second heart sound(S2), the duration of S1, systole, S2, and diastole within a cardiac cycle of phonocardiogram (PCG), is an indispensable step to find out heart health. Recently, some neural network-based methods for heart sound segmentation have shown good performance.

View Article and Find Full Text PDF

Early and accurate identification of the balance deficits could reduce falls, in particular for older adults, a prone population. Our work investigates deep neural networks' capacity to identify human balance patterns towards predicting fall-risk. Human balance ability can be characterized based on commonly-used balance metrics, such as those derived from the force-plate time series.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!