Reducing atmospheric CO is an international priority. One way to assist stabilising and reducing CO is to promote secondary tropical forest regrowth on abandoned agricultural land. However, relationships between above- and belowground carbon stocks with secondary forest age and specific soil nutrients remain unclear. Current global estimates for CO uptake and sequestration in secondary tropical forests focus on aboveground biomass and are parameterised using relatively coarse metrics of soil fertility. Here, we estimate total carbon stocks across a chronosequence of regenerating secondary forest stands (40-120 years old) in Panama, and assess the relationships between both above- and belowground carbon stocks with stand age and specific soil nutrients. We estimated carbon stocks in aboveground biomass, necromass, root biomass, and soil. We found that the two largest carbon pools - aboveground biomass and soil - have distinct relationships with stand age and soil fertility. Aboveground biomass contained ~61-97 Mg C ha (24-39% total carbon stocks) and significantly increased with stand age, but showed no relationship with soil nutrients. Soil carbon stocks contained ~128-206 Mg C ha (52-70% total stocks) and were unrelated to stand age, but were positively related to soil nitrogen. Root biomass carbon stocks tracked patterns exhibited by aboveground biomass. Necromass carbon stocks did not increase with stand age, but stocks were held in larger pieces of deadwood in older stands. Comparing our estimates to published data from younger and older secondary forests in the surrounding landscape, we show that soil carbon recovers within 40 years of forest regeneration, but aboveground biomass carbon stocks continue to increase past 100 years. Above- and belowground carbon stocks appear to be decoupled in secondary tropical forests. Paired measures of above- and belowground carbon stocks are necessary to reduce uncertainty in large-scale models of atmospheric CO uptake and storage by secondary forests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.133987 | DOI Listing |
Data Brief
February 2025
UMR SAS, INRAE, Institut Agro, 35 000 Rennes, France.
Forage crop rotations including grasslands, common in dairy systems, are known to ensure good productivity and limit the decrease of soil organic matter frequently observed in permanent arable land. A dataset was built to compile data from the Kerbernez long-term experiment, conducted in Brittany(France) from 1978 to 2005. This experiment compared the effect of different forage crop rotations fertilized with ammonium nitrate and/or slurry, with or without grassland, on forage production (quantity, quality) and changes in soil physio-chemical characteristics.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa, 16417, Ethiopia.
Many approaches have been implemented in order to reduce the emissions of particular pollutants without compromising engine performance. Cotton and castor mixed seed oil was chosen for the current study due to their distinct fatty acid composition and potential as a feedstock for bio-additives. Three fuel samples-99 % diesel and 1 % blended fuel (cottonseed oil + castor seed oil), 99.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Jinghong 666303, China.
Ecosystem functioning and management are primarily concerned with addressing climate change and biodiversity loss, which are closely linked to carbon stock and species diversity. This research aimed to quantify forest understory (shrub and herb) diversity, tree biomass and carbon sequestration in the Binsar Wildlife Sanctuary. Using random sampling methods, data were gathered from six distinct forest communities.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Voke Branch, Lithuanian Research Centre for Agriculture and Forestry, Zalioji 2, LT-02232 Vilnius, Lithuania.
Grasses can sustain soil functions despite nutrient depletion, which can have serious consequences for soil processes and ecosystem services. This paper summarizes the results of the long-term experiment (1995-2024) carried out in within a temperate climate zone, focusing on the productivity of natural and managed grasslands; their succession changes over time, and so do the effects on soil chemical properties, and soil organic carbon (SOC) sequestration. The results indicated that two land uses-abandoned land (AL) and grassland fertilized with mineral fertilizers (MGf)-can be effectively applied to prevent soil degradation.
View Article and Find Full Text PDFPLoS One
January 2025
College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China.
Influenced by urban expansion, population growth, and various socio-economic activities, land use in the Yangtze River Delta (YRD) area has undergone prominent changes. Modifications in land use have resulted in adjustments to ecological structures, leading to subsequent fluctuations in carbon storage. This study focuses on YRD region and analyzes the characteristics of land use changes in the area using land use data from 2000 to 2020, with a 10-year interval.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!