Synchro-Excited Free-Running Single Photon Counting: A Novel Method for Measuring Short-Wave Infrared Emission Kinetics.

Anal Chem

Department of Chemistry and the Smalley-Curl Institute , Rice University, Houston , Texas 77005 , United States.

Published: October 2019

Time-resolved measurements of short-wave infrared (SWIR) photoluminescence on the submicrosecond to millisecond scale are needed for physical and chemical studies involving singlet oxygen, single-walled carbon nanotubes, and other samples with weak, slow emission. We present here an alternative to the common method of time-correlated single photon counting (TCSPC) that is well suited to indium gallium arsenide avalanche photodiode (APD) detectors operated in Geiger mode. In the new method, termed synchro-excited free-running single photon counting (SEFR-SPC), excitation pulses from inexpensive laser diodes (providing a variety of wavelengths) are synchronized to detection events from a free-running detector covering the 900 to 1700 nm range. In contrast to traditional TCSPC, data from this method can be rigorously corrected for pile-up distortions, allowing operation with high excitation powers and low repetition rates. A technique is described to extend the system's dynamic range to approximately 10. We also show that SEFR-SPC provides state-of-the-art sensitivity in the SWIR spectral region and that spectrally filtered kinetic data can offer additional insights. A six-step correction protocol has been developed and implemented as a LabVIEW program for very accurate acquisition of kinetic shapes. The SEFR-SPC method will be a valuable tool for studies of weak, long-lived emission sources.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b03207DOI Listing

Publication Analysis

Top Keywords

single photon
12
photon counting
12
synchro-excited free-running
8
free-running single
8
short-wave infrared
8
method
5
counting novel
4
novel method
4
method measuring
4
measuring short-wave
4

Similar Publications

A review of state-of-the-art resolution improvement techniques in SPECT imaging.

EJNMMI Phys

January 2025

Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.

Single photon emission computed tomography (SPECT), a technique capable of capturing functional and molecular information, has been widely adopted in theranostics applications across various fields, including cardiology, neurology, and oncology. The spatial resolution of SPECT imaging is relatively poor, which poses a significant limitation, especially the visualization of small lesions. The main factors affecting the limited spatial resolution of SPECT include projection sampling techniques, hardware and software.

View Article and Find Full Text PDF

We describe a novel application of photon-counting detector CT (PCD-CT) in neurovascular imaging by harnessing the improved spatial resolution, attenuation of electronic noise, and reduction of metal artifacts. The presented case offers the unique challenge of high-quality imaging for the assessment of treated and untreated intracranial saccular aneurysms, in the setting of metal artifacts from embolization coils. Our goal was to explore optimized reconstruction parameters for ultra-high-resolution imaging (UHR) using a dedicated, sharp neurovascular kernel (Hv72) and the highest strength of quantum iterative reconstruction (QIR-4) for detailed characterization of the vasculature.

View Article and Find Full Text PDF

Aim: To evaluate the correlation between semi-quantitative analyses and visual scores of pulmonary perfusion Single Photon Emission Computed Tomography (SPECT)/ Computed Tomography (CT) imaging and pulmonary function test parameters (PFTs) in patients with interstitial lung diseases (ILDs).

Materials And Methods: This retrospective study included 35 patients with ILDs from China-Japan Friendship Hospital between January 2020 and December 2022. All patients underwent pulmonary perfusion SPECT/CT imaging and a pulmonary function test.

View Article and Find Full Text PDF

Anatomical characterization of Semi-arid Bignoniaceae using light and scanning electron microscopy.

BMC Plant Biol

January 2025

Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.

Background: The present research work was done to evaluate the anatomical differences among selected species of the family Bignoniaceae, as limited anatomical data is available for this family in Pakistan. Bignoniaceae is a remarkable family for its various medicinal properties and anatomical characterization is an important feature for the identification and classification of plants.

Methodology: In this study, several anatomical structures were examined, including stomata type and shape, leaf epidermis shape, epidermal cell size, and the presence or absence of trichomes and crystals (e.

View Article and Find Full Text PDF

Superselection Rules and Bosonic Quantum Computational Resources.

Phys Rev Lett

December 2024

Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité, CNRS UMR 7162, 75013 Paris, France.

We present a method to systematically identify and classify quantum optical nonclassical states as classical or nonclassical based on the resources they create on a bosonic quantum computer. This is achieved by converting arbitrary bosonic states into multiple modes, each occupied by a single photon, thereby defining qubits of a bosonic quantum computer. Starting from a bosonic classical-like state in a representation that explicitly respects particle number superselection rules, we apply universal gates to create arbitrary superpositions of states with the same total particle number.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!