Drugs in the chemical space beyond the rule of 5 (bRo5) can modulate targets with difficult binding sites while retaining cell permeability and oral absorption. Reviewing the syntheses of bRo5 drugs approved since 1990 highlights synthetic chemistry's contribution to drug discovery in this space. Initially, bRo5 drugs were mainly natural products and semi-synthetic derivatives. Later, peptidomimetics and de novo designed compounds, that include up to seven chiral centres and macrocyclic rings became dominant. These drugs are prepared by total synthesis, sometimes by routes of more than 25 steps with stereocentres originating from the chiral pool, or being installed by chiral induction or enzymatic resolution. Interestingly, ring-closing metathesis proved to be the method of choice for macrocyclisation in hepatitis C virus protease inhibitors. We conclude that structural simplification, planning of synthetic routes regarding incorporation of stereocentres and macrocyclisation, as well as incorporation of structural knowledge and consideration of chameleonic properties in design, should facilitate drug discovery in bRo5 space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201902716 | DOI Listing |
ADMET DMPK
August 2024
CASSMedChem, Molecular Biotechnology and Health Sciences Dept., University of Torino, Piazza Nizza 44, 10126 Torino, Italy.
Background And Purpose: The classical drug discovery toolbox continually expands beyond traditional rule of five (Ro5)-compliant small molecules to include new chemical modalities for difficult-to-drug targets. The paper focuses on the molecular properties essential to drive oral bioavailability within the bRo5 framework.
Experimental Approach: The first part outlines the concept and methodologies for characterizing bRo5 physicochemical properties, including considerations on chameleonicity; in particular, the paper summarizes the content of the last author's talk presented during the IAPC-10 Meeting held in Belgrade in September 2023 (https://iapchem.
J Med Chem
April 2024
Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States.
Developing orally bioavailable drugs demands an understanding of absorption in early drug development. Traditional methods and physicochemical properties optimize absorption for rule of five (Ro5) compounds; beyond rule of five (bRo5) drugs necessitate advanced tools like the experimental measure of exposed polarity (EPSA) and the AbbVie multiparametric score (AB-MPS). Analyzing AB-MPS and EPSA against ∼1000 compounds with human absorption data and ∼10,000 AbbVie tool compounds (∼1000 proteolysis targeting chimeras or PROTACs, ∼7000 Ro5s, and ∼2000 bRo5s) revealed new patterns of physicochemical trends.
View Article and Find Full Text PDFMar Drugs
December 2023
Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071 Malaga, Spain.
A mathematical concept, n-tuples are originally applied to medicinal chemistry, especially with the creation of scaffold diversity inspired by the hybridisation of different commercial drugs with cytarabine, a synthetic arabinonucleoside derived from two marine natural products, spongouridine and spongothymidine. The new methodology explores the virtual chemical-factorial combination of different commercial drugs (immunosuppressant, antibiotic, antiemetic, anti-inflammatory, and anticancer) with the anticancer drug cytarabine. Real chemical combinations were designed and synthesised for 8-duples, obtaining a small representative library of interesting organic molecules to be biologically tested as proof of concept.
View Article and Find Full Text PDFChemMedChem
March 2024
Computer-Aided Drug Design, Global Discovery Chemistry, Novartis BioMedical Research, 4002, Basel, Switzerland.
An ab initio conformational analysis of oral beyond Rule of 5 (bRo5) drugs was complemented with measured permeability and logP(octanol) to derive design principles conferring oral bioavailability. 3D polar surface area (PSA) thresholds for oral bRo5 drugs coincided with those reported for Ro5 space. The majority of oral bRo5 drugs exceeded the Ro5 logP threshold of 5, reflecting a bias for permeability.
View Article and Find Full Text PDFMol Pharm
November 2023
Research & Development, AbbVie Inc., North Chicago, Illinois 60064, United States.
ABBV-167, a phosphate prodrug of BCL-2 inhibitor venetoclax, was recently progressed into the clinic as an alternative means of reducing pill burden for patients in high-dose indications. The dramatically enhanced aqueous solubility of ABBV-167 allowed for high drug loading within a crystalline tablet and, when administered in phase I clinical study, conferred venetoclax exposure commensurate with the equivalent dose administered as an amorphous solid dispersion. In enabling the progression into the clinic, we performed a comprehensive evaluation of the CMC development aspects of this beyond the rule of five (bRo5) prodrug.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!