Impact of barge movement on phytoplankton abundance and biomass was assessed in the lower stretch of river Ganga, popularly known as Bhagirathi-Hooghly river, during April 2016 to March, 2017. Based on the magnitude of tide, intensity of shipping and boating activities, the stretch from Baranagar to Lalbag (278 km), located at latitude (22°38'33.41"N to 24°10'59.75"N) and longitude (88°21'21.29"E to 88°16'5.65"E) was divided into three zones viz. zone-I (Baranagar to Barrackpore), zone II (Triveni to Balagarh) and zone III (Nabadweep to Lalbag). Water samples were collected randomly from six stations covering 22 barge movements at their passage at three different time intervals viz., 30 minutes before 'barge movement', during 'barge movement' and 30 minutes after 'barge movement'. Analysis revealed the presence of 52 phytoplankton taxa belonged to 5 phylum during the study period. The abundance of phytoplankton was highest in zone-I followed by zone III and the zone II. A 44% decrease (1,997 ±1,510 ul-1) in phytoplankton abundance was observed during 'barge movement' with respect to normal condition (3,513 ± 2,239 ul-1) which could be due to propeller turbulence in the passage. Cell damage study revealed 21% damage in phytoplankton cell structure in 'during barge' followed by 'after barge' (10%) condition compared to natural state (6%). Study revealed that phytoplankton biomass (Chlorophyll a) was influenced by 'barge movement' in the sampling stretches and the impact was assessed by one way ANOVA. The effect was found significant at Barrackpore (p <0.01), Triveni (p <0.01), Balagarh (p <0.01) and Lalbag (p <0.01) where as it was insignificant at Baranagar and Nabadweep, which may be due to continuous and existing boat trafficking at Baranagar and Nabadweep. Two way ANOVA computed using 'barge movement' and sampling stations showed significant (p<0.01) effect on magnitude of Chl a concentrations in the sampling locations. Thus, the 'barge movement' influenced phytoplankton abundance and biomass, it had a detrimental effect on phytoplankton cell architecture also. The data set of this work serves as foundation information to understand the ecological implications augmented barge induced environmental disturbances in waterways. This is the first such study which depicts the impact of 'barge movement' on aquatic food chain linkages in Bhagirathi- Hooghly river.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726143PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221451PLOS

Publication Analysis

Top Keywords

'barge movement'
20
phytoplankton abundance
12
river ganga
8
zone iii
8
minutes 'barge
8
study revealed
8
phytoplankton
7
'barge
5
movement'
5
impact assessment
4

Similar Publications

The adverse effect of barge movement on the river's aquatic ecosystem is of global concern. The phytoplankton community, a bioindicator, is possibly the foremost victim of the barge movement. This study hypothesized phytoplankton diversity loss induced by barge movement in a large river.

View Article and Find Full Text PDF

Vessel sound is now globally recognized as a significant and pervasive pollutant to aquatic life. However, compared to marine environments, there is a paucity of data on sound emitted by vessel activity in freshwater habitats. The Upper Mississippi River (UMR) is home to a diverse array of aquatic life as well as being a key route for barge transportation with 29 locks and dams.

View Article and Find Full Text PDF

Impact of barge movement on phytoplankton abundance and biomass was assessed in the lower stretch of river Ganga, popularly known as Bhagirathi-Hooghly river, during April 2016 to March, 2017. Based on the magnitude of tide, intensity of shipping and boating activities, the stretch from Baranagar to Lalbag (278 km), located at latitude (22°38'33.41"N to 24°10'59.

View Article and Find Full Text PDF

Sickle cell disease (SCD) mice (Townes model of SCD) presented exacerbated exercise-induced acidosis and fatigability as compared to control animals. We hypothesize that endurance training could represent a valuable approach to reverse these muscle defects. Endurance-trained HbAA (HbAA-END, n=10), HbAS (HbAS-END, n=11) and HbSS (HbSS-END, n=8) mice were compared to their sedentary counterparts (10 HbAA-SED, 10 HbAS-SED and 9 HbSS-SED mice) during two rest - exercise - recovery protocols during which muscle energetics and function were measured.

View Article and Find Full Text PDF

Characterizing large river sounds: Providing context for understanding the environmental effects of noise produced by hydrokinetic turbines.

J Acoust Soc Am

January 2016

Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6351, USA.

Underwater noise associated with the installation and operation of hydrokinetic turbines in rivers and tidal zones presents a potential environmental concern for fish and marine mammals. Comparing the spectral quality of sounds emitted by hydrokinetic turbines to natural and other anthropogenic sound sources is an initial step at understanding potential environmental impacts. Underwater recordings were obtained from passing vessels and natural underwater sound sources in static and flowing waters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!