The adherens junction (AJ) couples the actin cytoskeletons of neighboring cells to allow mechanical integration and tissue organization. The physiological demands of intercellular adhesion require that the AJ be responsive to dynamic changes in force while maintaining mechanical load. These demands are tested in the heart, where cardiomyocyte AJs must withstand repeated cycles of actomyosin-mediated contractile force. Here we show that force-responsive cardiomyocyte AJs recruit actin-binding ligands to selectively couple actin networks. We employed a panel of N-cadherin-αE-catenin fusion proteins to rebuild AJs with specific actin linkages in N-cadherin-null cardiomyocytes. In this system, vinculin recruitment was required to rescue myofibril integration at nascent contacts. In contrast, loss of vinculin from the AJ disrupted junction morphology and blocked myofibril integration at cell-cell contacts. Our results identify vinculin as a critical link to contractile actomyosin and offer insight to how actin integration at the AJ is regulated to provide stability under mechanical load.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6761764 | PMC |
http://dx.doi.org/10.1091/mbc.E19-04-0216 | DOI Listing |
Dev Cell
December 2024
Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA. Electronic address:
The coordinated movement of cell collectives is essential for normal epithelial tissue development, maintenance, and cancer progression. Here, we report on a minimal 3D extracellular matrix (ECM) system wherein both invasive collective migration (ICM) and rotational collective migration (RCM) arise spontaneously from individually seeded epithelial cells of mammary and hepatic origin, regardless of whether they express adherens junctions, and lead to ductal-like and acinar-like structures, respectively. Quantitative microscopy and cellular Potts modeling reveal that initial differences in cell protrusion dynamics and matrix-remodeling localization generate RCM and ICM behavior in confining 3D ECM.
View Article and Find Full Text PDFMed Sci (Paris)
December 2024
Aix Marseille Université, CNRS, Institut de biologie du développement de Marseille, UMR7288, Marseille, France.
JCI Insight
December 2024
Institute of BioInnovation, Biomedical Sciences Research Centre "Alexander Fleming," Vari-Athens, Greece.
Systemic capillary leak syndrome (SCLS) is a rare life-threatening disorder due to profound vascular leak. The trigger and the cause of the disease are currently unknown and there is no specific treatment. Here, we identified a rare heterozygous splice-site variant in the TLN1 gene in a familial SCLS case, suggestive of autosomal dominant inheritance with incomplete penetrance.
View Article and Find Full Text PDFBiol Proced Online
December 2024
Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China.
Chang-Wei-Qing (CWQ) is a widely recognized Traditional Chinese Medicine (TCM) formulation composed of Astragalus, Codonopsis, Atractylodes, Poria, Coix seed, Akebia trifoliata Koidz, Sargentodoxa cuneata, and Vitis quinquangularis Rehd. This formulation has garnered significant interest for its positive effects in mitigating colorectal cancer, and when combined with PD-1, it affects some gut microbiota associated with tumor infiltrating lymphocytes cells. However, the biological rationale underlying the suppression of colitis-associated colorectal cancer (CAC) in AOM/DSS-treated mice by CWQ combined with PD-1 inhibitor remains to be explored.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Department of Pathology, Qingdao Municipal Hospital Group, 1 Jiaozhou Road, Qingdao, 266011, Shandong, China.
Background: The challenge of expanding haematopoietic stem/progenitor cells (HSPCs) in vitro has limited their clinical application. Human hair follicle mesenchymal stem cells (hHFMSCs) can be reprogrammed to generate intermediate stem cells by transducing OCT4 (hHFMSCs) and pre-inducing with FLT3LG/SCF, and differentiated into erythrocytes. These intermediate cells exhibit gene expression patterns similar to pre-HSCs, making them promising for artificial haematopoiesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!