Chemical analysis at the nanoscale is critical to advance our understanding of materials and systems from medicine and biology to material science and computing. Macroscale-observed phenomena in these systems are in the large part driven by processes that take place at the nanoscale and are highly heterogeneous. Therefore, there is a clear need to develop a new technology that enables correlative imaging of material functionalities with nanoscale spatial and chemical resolutions that will enable us to untangle the structure-function relationship of functional materials. Therefore, here, we report on the analytical figures of merit of the newly developed correlative chemical imaging technique of helium ion microscopy coupled with secondary ion mass spectrometry (HIM-SIMS) that enables multimodal topographical/chemical imaging of organic and inorganic materials at the nanoscale. In HIM-SIMS, a focused ion beam acts as a sputtering and ionization source for chemical analysis along with simultaneous high-resolution surface imaging, providing an unprecedented level of spatial resolution for gathering chemical information on organic and inorganic materials. In this work, we demonstrate HIM-SIMS as a platform for a next-generation tool for an in situ material design and analysis capable of down to 8 nm spatial resolution chemical imaging, layered metal structure imaging in depth profiling, single graphene layer detection, and spectral analysis of metals, metal oxides, and polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b03377 | DOI Listing |
ACS Nano
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Optical metasurfaces, arrays of nanostructures engineered to manipulate light, have emerged as a transformative technology in both research and industry due to their compact design and exceptional light control capabilities. Their strong light-matter interactions enable precise wavefront modulation, polarization control, and significant near-field enhancements. These unique properties have recently driven their application in biomedical fields.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China.
Mitochondrial quality control is paramount for cellular development, with mitochondrial electron flow (Mito-EF) playing a central role in maintaining mitochondrial homeostasis. However, unlike visible protein entities, which can be monitored through chemical biotechnology, regulating mitochondrial quality control by invisible entities such as Mito-EF has remained elusive. Here, a Mito-EF tracker (Mito-EFT) with a four-pronged probe design is presented to elucidate the dynamic mechanisms of Mito-EF's involvement in mitochondrial quality control.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea.
Activating the pyroptosis pathway of tumor cells by photodynamic therapy (PDT) for immunogenic cell death (ICD) is considered a valid strategy in pursuit of antitumor immunotherapy, but it remains a huge challenge due to the lack of reliable design guidelines. Moreover, it is often overlooked that conventional PDT can exacerbate the development of tumor immunosuppressive microenvironment, which is apparently unfavorable to clinical immunotherapy. The endoplasmic reticulum's (ER) pivotal role in cellular homeostasis and its emerging link to pyroptosis have galvanized interest in ER-centric imaging and therapeutics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Tokyo Electron America, Inc., 2400 Grove Blvd., Austin, Texas 78741, United States.
Photoresists are thin film materials designed to transform an optimal image into a mechanical mask. Diverse exposure techniques such as photolithography induce modifications in the exposed areas that result in solubility changes that can then be selectively removed with appropriate agents (developers). Photoresist materials need to keep pace with the increasingly demand for feature size reduction.
View Article and Find Full Text PDFLab Chip
January 2025
CNRS UMR 7010, Institut de Physique de Nice (INPHYNI), Université Côte d'Azur, 06108 Nice, France.
pH regulation of eukaryotic cells is of crucial importance and influences different mechanisms including chemical kinetics, buffer effects, metabolic activity, membrane transport and cell shape parameters. In this study, we develop a microfluidic system to rapidly and precisely control a continuous flow of ionic chemical species to acutely challenge the intracellular pH regulation mechanisms and confront predictive models. We monitor the intracellular pH dynamics in real-time using pH-sensitive fluorescence imaging and establish a robust mathematical tool to translate the fluorescence signals to pH values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!