Heterostructure formation is an effective method used for designing photocatalysts that solve problems caused by photoexcited charge recombination phenomena associated with the photocatalytic water redox reaction. This work reports a new Co-metal-incorporated ternary heterostructured photocatalyst, CdS/CoO/Co-metal, which enhanced charge separation to increase photocatalytic H evolution 30.5-fold in comparison to pure CdS under visible light. This work demonstrates for the first time the effect of the Co metal on photocatalytic H evolution using the CdS/CoO/Co-metal ternary heterostructure. In the ternary heterostructure, Co metal and CoO act as photogenerated electron- and hole-capturing cocatalysts, respectively. Results from photoelectrochemical studies along with photocatalytic H evolution data proved the enhancement of charge transfer and separation in the CdS/CoO/Co-metal heterostructure due to the addition of Co metal and CoO. Hence, the synergistic charge separation improvement achieved by the combination of CoO and the Co metal with CdS produced a photocatalytic H evolution rate of 9.54 μmol/h, which is the highest reported H evolution rate for a CdS-based system under l sun solar irradiance (>420 nm) to the best of our knowledge.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.9b01854DOI Listing

Publication Analysis

Top Keywords

photocatalytic evolution
20
visible light
8
charge separation
8
ternary heterostructure
8
metal coo
8
evolution rate
8
photocatalytic
6
evolution
6
designing cds-based
4
ternary
4

Similar Publications

In the face of escalating environmental challenges such as fossil fuel dependence and water pollution, innovative solutions are essential for sustainable development. In this regard, zeolitic imidazolate frameworks (ZIFs), specifically ZIF-8, act as promising photocatalysts for environmental remediation and renewable energy applications. ZIF-8, a subclass of metal-organic frameworks (MOFs), is renowned for its large specific surface area, high porosity, rapid electron transfer ability, abundant functionalities, ease of designing, controllable properties, and remarkable chemical and thermal stability.

View Article and Find Full Text PDF

Traditional photocatalysts often have limited efficiency due to the high recombination rate of photogenerated electron-hole pairs. In this work, we synthesized 3D/2D ZnSe-MXene heterojunctions by an in situ electrostatic self-assembly method. Notably, the 3% MXene-ZnSe composite exhibited an optimized photocatalytic hydrogen production rate of 765.

View Article and Find Full Text PDF

Photocatalytic Methanol Dehydrogenation with Switchable Selectivity.

J Am Chem Soc

January 2025

Department of Chemistry, University of California, Berkeley, California 94720, United States.

Switchable selectivity achieved by altering reaction conditions within the same photocatalytic system offers great advantages for sustainable chemical transformations and renewable energy conversion. In this study, we investigate an efficient photocatalytic methanol dehydrogenation with controlled selectivity by varying the concentration of nickel cocatalyst, using zinc indium sulfide nanocrystals as a semiconductor photocatalyst, which enables the production of either formaldehyde or ethylene glycol with high selectivity. Control experiments revealed that formaldehyde is initially generated and can either serve as a terminal product or intermediate in producing ethylene glycol, depending on the nickel concentration in the solution.

View Article and Find Full Text PDF

The factors controlling the catalytic activity in photochemical hydrogen evolution reaction (HER) are studied in detail for two macrocyclic cobalt compounds bearing two N-heterocyclic carbenes and two pyridyl donors ( and , where has a methoxy substituent on each pyridyl ligand). The present study adopts an aqueous photosystem consisting of EDTA, [Ru(bpy)] (bpy = 2,2'-bipyridine), and MV (MV = methylviologen) at pH = 5. Both catalysts are shown to promote HER in a similar efficiency (TON = 12-13 in 6 h), revealing a minor contribution of the electron-donating methoxy substituents.

View Article and Find Full Text PDF

Anion vacancy engineered Cu/ZnInS-V/TiO-V S-scheme heterojunction for enhancing photocatalytic overall water splitting.

J Colloid Interface Sci

January 2025

National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091 China; Southwest United Graduate School, Kunming 650091 China. Electronic address:

Heterojunction materials for photocatalytic overall water splitting (POWS) become popular in recent times. However, even in the superior S-scheme heterojunction, the two semiconductor materials still do not have an efficient activity to separate and migrate photogenerated carriers. To further improve the charge separation and enhance the activity of POWS, a novel S-scheme heterojunction photocatalyst, Cu/ZnInS-V/TiO-V, was synthesized using solvothermal and calcination methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!