Fatty liver disease is a disease manifested with excessive alcohol intake and obese. Importantly, hydrogen sulfide (H S) has been revealed to participate in the progression of fatty liver; however, the underlying mechanism has not been clearly elucidated yet. In this study, we aimed to investigate the effects of exogenous H S on fatty liver ischemia-reperfusion injury (IRI) through mediating class A scavenger receptor (SRA) pathway in rats. By determining endoplasmic reticulum stress (ERS)-related factors, autophagy markers and apoptosis-related factors in liver tissue and liver function, levels of oxidative stress, inflammatory factors, and hepatocyte apoptosis, the effects of H S on IRI-induced autophagy, oxidative stress, and inflammation were all examined in rat model of fatty liver IRI. Results from obtained data showed that H S decreased the expression of SRA, Grp78, PERK, CHOP, and Caspase-3, and increased that of LC3-II/LC3-I, in addition to alleviating the pathological changes of liver and reducing the levels of ALT, AST, LDH TBARS, and MDA. Moreover, H S decreased the levels of oxidative stress, the expression of pro-inflammatory factors including tumor necrosis factor α, interleukin 1, and interleukin 6, and the apoptosis of hepatocytes. Our findings suggested exogenous H S could reduce ERS by mediating the SRA pathway and protect liver function by inducing autophagy, and protect against IRI by reducing oxidative stress and inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbin.11234 | DOI Listing |
JHEP Rep
February 2025
Department of Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain.
Background & Aims: Systemic inflammation is a driver of decompensation in cirrhosis with unclear relevance in the compensated stage. We evaluated inflammation and bacterial translocation markers in compensated cirrhosis and their dynamics in relation to the first decompensation.
Methods: This study is nested within the PREDESCI trial, which investigated non-selective beta-blockers for preventing decompensation in compensated cirrhosis and clinically significant portal hypertension (CSPH: hepatic venous pressure gradient ≥10 mmHg).
Front Immunol
January 2025
National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
Background: Hepatocellular carcinoma (HCC) is one of the most prevalent causes of cancer-related morbidity and mortality worldwide. Late-stage detection and the complex molecular mechanisms driving tumor progression contribute significantly to its poor prognosis. Dysregulated R-loops, three-stranded nucleic acid structures associated with genome instability, play a key role in the malignant characteristics of various tumors.
View Article and Find Full Text PDFJ Endocr Soc
January 2025
Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig 04103, Germany.
Metabolic diseases affect a consistent part of the human population, leading to rising mortality rates. This raises the need for diagnostic tools to monitor the progress of these diseases. Lately, circulating cell-free DNA (cfDNA) has emerged as a promising biomarker for various metabolic diseases, including obesity, type 2 diabetes, and metabolic-associated fatty liver disease.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
National Vaccine Innovation Platform, Scholl of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
Unlabelled: The prevention and treatment of metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), have emerged as critical global health challenges. Current lipid-lowering pharmacotherapies are associated with side effects, including hepatotoxicity, rhabdomyolysis, and decreased erythrocyte counts, underscoring the urgent need for safer therapeutic alternatives. Hepatocyte nuclear factor 4α (HNF4α) has been identified as a pivotal regulator of lipid metabolism, making it an attractive target for drug development.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
Background: Fatty Liver Disease (FLD) progresses from steatosis to steatohepatitis and, if left untreated, can lead to irreversible conditions such as cirrhosis and hepatocarcinoma. The etiology of FLD remains unclear, but factors such as overconsumption, poor diet, obesity, and diabetes contribute to its development. Palmitic acid (PA) plays a significant role in FLD progression by inducing apoptosis, inflammation, oxidative stress, and endoplasmic reticulum (ER) stress in hepatocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!