Purpose: A multi-coil shim setup is designed and optimized for human brain shimming. Here, the size and position of a set of square coils are optimized to improve the shim performance without increasing the number of local coils. Utilizing such a setup is especially beneficial at ultrahigh fields where B inhomogeneity in the human brain is more severe.
Methods: The optimization started with a symmetric arrangement of 32 independent coils. Three parameters per coil were optimized in parallel, including angular and axial positions on a cylinder surface and size of the coil, which were constrained by cylinder size, construction consideration, and amplifiers specifications. B maps were acquired at 9.4T in 8 healthy volunteers for use as training data. The global and dynamic shimming performance of the optimized multi-coil were compared in simulations and measurements to a symmetric design and to the scanner's second-order shim setup, respectively.
Results: The optimized multi-coil performs better by 14.7% based on standard deviation (SD) improvement with constrained global shimming in comparison to the symmetric positioning of the coils. Global shimming performance was comparable with a symmetric 65-channel multi-coil and full fifth-order spherical harmonic shim coils. On average, an SD of 48.4 and 31.9 Hz was achieved for in vivo measurements after global and dynamic slice-wise shimming, respectively.
Conclusions: An optimized multi-coil shim setup was designed and constructed for human whole-brain shimming. Similar performance of the multi-coils with many channels can be achieved with a fewer number of channels when the coils are optimally arranged around the target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.27929 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!