Background: Structural bone allografts are an established treatment method for long-bone structural defects resulting from such conditions as traumatic injury and sarcoma. The functional lifetime of structural allografts depends on resistance to cyclic loading (cyclic fatigue life), which can lead to fracture at stress levels well below the yield strength. Raman spectroscopy biomarkers can be used to non-destructively assess the 3 primary components of bone (collagen, mineral, and water), and may aid in optimizing allograft selection to decrease fatigue fracture risk. We studied the association of Raman biomarkers with the cyclic fatigue life of human allograft cortical bone.
Methods: Twenty-one cortical bone specimens were machined from the femoral diaphyses of 4 human donors (a 63-year old man, a 61-year-old man, a 51-year-old woman, and a 48-year-old woman) obtained from the Musculoskeletal Transplant Foundation. Six Raman biomarkers were analyzed: collagen disorganization, mineral maturation, matrix mineralization, and 3 water compartments. The specimens underwent cyclic fatigue testing under fully reversed conditions (35 and 45 MPa), during which they were tested to fracture or to 30 million cycles ("runout"), simulating 15 years of moderate activity. A tobit censored linear regression model for cyclic fatigue life was created.
Results: The multivariate model explained 60% of the variance in the cyclic fatigue life (R = 0.604, p < 0.001). Increases in Raman biomarkers for disordered collagen (coefficient: -2.74×10, p < 0.001) and for loosely collagen-bound water compartments (coefficient: -2.11×10, p < 0.001) were associated with a decreased cyclic fatigue life. Increases in Raman biomarkers for mineral maturation (coefficient: 3.50×10, p < 0.001), matrix mineralization (coefficient: 2.32×10, p < 0.001), tightly collagen-bound water (coefficient: 1.19×10, p < 0.001), and mineral-bound water (coefficient: 3.27×10, p < 0.001) were associated with an increased cyclic fatigue life. Collagen disorder accounted for 44% of the variance in the cyclic fatigue life, mineral maturation accounted for 6%, and all bound water compartments accounted for 3%.
Conclusions: Increasing baseline collagen disorder was associated with a decreased cyclic fatigue life and had the strongest correlation with the cyclic fatigue life of human cortical donor bone. This model should be prospectively validated.
Clinical Relevance: Raman analysis is a promising tool for the non-destructive evaluation of structural bone allograft quality for load-bearing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2106/JBJS.18.00832 | DOI Listing |
Sci Rep
January 2025
Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
In cases of large mandibular continuity defects resulting from malignancy resection, the current standard of care involves using patient-specific/custom titanium reconstruction plates along with autogenous grafts (fibula, scapula, or iliac crest segments). However, when grafts are not feasible or desired, only the reconstruction plate is used to bridge the gap. Unfortunately, metal osteosynthesis and reconstruction plates, including titanium, exhibit adverse effects such as stress-shielding and limitations in accurate postoperative irradiation (especially with proton-beam therapy).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Clinicopathological studies of Alzheimer's disease (AD) have demonstrated that synaptic or neuronal loss and clinical cognitive decline do not reliably correlate with fibrillar amyloid burden. We created a transgenic mouse model overexpressing Dutch (E693Q) mutant human amyloid precursor protein (APP) driven by the pan-neuronal Thy1 promoter. Accumulation of APP carboxyl-terminal fragments was observed in the brains of these mice, which develop an impaired learning phenotype directly proportional to brain oAβ levels.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
Hydrogels are promising materials for wearable electronics, artificial skins and biomedical engineering, but their limited stretchability, self-recovery and crack resistance restrict their performance in demanding applications. Despite efforts to enhance these properties using micelle cross-links, nanofillers and dynamic interactions, it remains a challenge to fabricate hydrogels that combine high stretchability, self-healing and strong adhesion. Herein, we report a novel hydrogel synthesized the copolymerization of acrylamide (AM), maleic acid (MA) and acrylonitrile (AN), designed to address these limitations.
View Article and Find Full Text PDFJ Prosthet Dent
December 2024
Professor, Department of Restorative Dentistry, University of Washington School of Dentistry, Seattle, Wash. Electronic address:
Statement Of Problem: The angled screw channel (ASC) design has been well accepted for implant prostheses. However, investigation into the behavior of the ASC connection is sparse.
Purpose: The purpose of this in vitro study was to assess the effect of cyclic loading on the internal connection of an ASC system compared with straight access systems by measuring reverse torque values (RTVs) and using microcomputed tomography (µCT) imaging.
Sci Total Environ
December 2024
Leibniz University Hannover, Ludwig Franzius Institute of Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, Hannover 30167, Germany.
Seagrass meadows are one of the most productive ecosystems of the world. Seagrass enhances biodiversity, sequesters CO and functions as a coastal protection measure by mitigating waves and enhancing sedimentation. However, populations are declining in many regions and natural recolonization of bare sediment beds is protracted and unlikely.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!