Informal caregivers often complain about missing knowledge. A knowledge-based personalized educational system is developed, which provides caregiving relatives with the information needed. Yet, evaluation against domain experts indicated, that parts of the knowledge-base are incorrect. To overcome these problems the system can be extended by a learning capacity and then be trained further utilizing feedback from real informal caregivers. To extend the existing system an artificial neural network was trained to represent a large part of the knowledge-based approach. This paper describes the found artificial neural network's structure and the training process. The found neural network structure is not deep but very wide. The training terminated after 374.700 epochs with a mean squared error of 7.731 ∗ 10-8 for the end validation set. The neural network represents the parts of the knowledge-based approach and can now be retrained with user feedback, which will be collected during a system test in April and May 2019.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI190819DOI Listing

Publication Analysis

Top Keywords

neural network
12
learning capacity
8
informal caregivers
8
artificial neural
8
knowledge-based approach
8
system
5
extending knowledge-based
4
knowledge-based system
4
system learning
4
capacity informal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!