A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside attenuates MPP+/MPTP-induced neurotoxicity in vitro and in vivo by restoring the BDNF-TrkB and FGF2-Akt signaling axis and inhibition of apoptosis. | LitMetric

The major bioactive ingredient THSG of Polygonum multiflorum is well established for its anti-oxidation, anti-aging and anti-inflammation properties. Increasing evidence supports the capacity of THSG to ameliorate the biochemistry of neurotrophins and their downstream signaling axis in mouse models to attenuate neurodegenerative diseases such as Alzheimer's and Parkinson's disease. In this study, the neuroprotective effects of THSG were studied in vitro and in vivo. In cultured mesencephalic dopamine neurons and SH-SY5Y cell line, it was found that THSG protected the integrity of the cell body and neurite branching from MPP+-induced toxicity by restoring the expression of FGF2 and BDNF and their downstream signaling pathways to inhibit apoptosis and promote cell survival. The inhibition of Akt signaling by LY294002 or TrkB activity by K252a eliminated the neuroprotective effects of THSG. In the MPTP-induced mouse models of Parkinson's disease, THSG ameliorated the animal behaviors against MPTP-induced neurotoxicity, which was demonstrated by the pole test and the tail suspension test. Biochemical and immunohistochemical analysis verified the THSG-mediated restoration of the FGF2-Akt and BDNF-TrkB signaling axis in the substantia nigra and corpus striatum and the recovery of dopaminergic neurons. These results establish the neuroprotective effects of THSG in vitro and in vivo and unravel the underlying mechanism against toxin-induced neural atrophy, providing a new avenue for the use and pharmacological research of edible medicine for anti-neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9fo01309aDOI Listing

Publication Analysis

Top Keywords

vitro vivo
12
signaling axis
12
neuroprotective effects
12
effects thsg
12
downstream signaling
8
mouse models
8
parkinson's disease
8
thsg
7
signaling
5
2354'-tetrahydroxystilbene-2-o-β-d-glucoside attenuates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!