Multidrug resistant tumors-aimed theranostics on the basis of strong electrostatic attraction between resistant cells and nanomaterials.

Biomater Sci

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Published: December 2019

Chemotherapy is one of the most common and effective ways for the clinical treatment of tumors, but tumor cells develop resistance toward drugs after a long period of chemotherapy. Interestingly, the gene expression of resistant cells usually generates increased sialic acid and raises the negative potential of the cell membranes, which is potentially useful to design novel theranostic models. In this work, we demonstrate multidrug resistant tumors-aimed theranostics by the virtue of the strong electrostatic attraction between resistant cells and nanomaterials. Human oral epithelial carcinoma vincristine-resistant tumor (KBV) and human oral epithelial carcinoma tumor (KB) were employed and compared as the tumor models. Polyethylene glycol-coated and Cu(ii) and vincristine codoped polyaniline nanoshuttles (VCR-PEG-CuPani NSs), which possessed multifunctions, positive charges, and blood circulation half-life of 6.26 ± 0.16 h, were employed as the nanomaterials for performing the tumor theranostics. Because of the stronger electrostatic attraction with KBV than that with KB, VCR-PEG-CuPani NSs showed higher enrichment of 8.05 ± 0.39% ID g for KBV and a lower value of 6.02 ± 0.22% ID g for KB. The higher accumulation of VCR-PEG-CuPani NSs in KBV tumors further improved the efficacy of tumor theranostics, such as those using magnetic resonance imaging, chemotherapy, and photothermal therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9bm01017cDOI Listing

Publication Analysis

Top Keywords

electrostatic attraction
12
resistant cells
12
vcr-peg-cupani nss
12
multidrug resistant
8
resistant tumors-aimed
8
tumors-aimed theranostics
8
strong electrostatic
8
attraction resistant
8
cells nanomaterials
8
human oral
8

Similar Publications

Photothermal/photodynamic synergistic antibacterial Nanocellulose film modified with antioxidant MXene-PANI Nanosheets.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

TEMPO-CNF film modified by two-dimension transition metal MXene has certain antibacterial properties. However, the problem of long-lasting stability greatly restricts the feasibility of long-term use of the composite film. Here, we introduced polyaniline (PANI) as a modifying molecule, which was electrostatically adsorbed on the surface of the MXene nanosheets to prevent its self-stacking and delay its oxidation.

View Article and Find Full Text PDF

Background: Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma.

View Article and Find Full Text PDF

Aiming toward a novel, noninvasive technique, with a real-time potential application in the monitoring of the complexation of steroidal neuromuscular blocker drugs Vecuronium () and Rocuronium () with sugammadex (, medication for the reversal of neuromuscular blockade induced by or in general anesthesia), we developed proof-of-principle methodology based on surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles prepared by the reduction of silver ions with hydroxylamine hydrochloride were used as SERS-active substrates, additionally aggregated with calcium nitrate as needed. The and SERS spectra were obtained within the biorelevant 5 × 10-1 × 10 M range, as well as the SERS of , though the latter was observed only in the presence of the aggregating agent.

View Article and Find Full Text PDF

The Effect of Metal Shielding Layer on Electrostatic Attraction Issue in Glass-Silicon Anodic Bonding.

Micromachines (Basel)

December 2024

Zhejiang Xinsheng Semiconductor Technology, Zhuji 311899, China.

Silicon-glass anode bonding is the key technology in the process of wafer-level packaging for MEMS sensors. During the anodic bonding process, the device may experience adhesion failure due to the influence of electric field forces. A common solution is to add a metal shielding layer between the glass substrate and the device.

View Article and Find Full Text PDF

Despite their widespread adoption, particle-scale simulation methods, such as the Discrete Element Method (DEM), for electrically charged particles in several natural processes and industrial transformations do not include realistic polarization effects. At close distances, these can dominate the particle motion and are impossible to predict by the commonly adopted Coulomb point-charge approximation. Sophisticated mathematical tools can account for uneven charge distributions, predicting an attractive force between a charged particle and a neutral particle or possible attraction between two like-charged particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!