Human African trypanosomiasis (HAT) also known as sleeping sickness is targeted for elimination as a public health problem by 2020 and elimination of infection by 2030. Although the number of reported cases is decreasing globally, integration of HAT control activities into primary healthcare services is endorsed to expand surveillance and control. However, this integration process faces several challenges in the field. This literature review analyzes what is known about integrated HAT control to guide the integration process in an era of HAT elimination. We carried out a scoping review by searching PubMed and Google Scholar data bases as well as gray literature documents resulting in 25 documents included for analysis. The main reasons in favor to integrate HAT control were related to coverage, cost, quality of service, or sustainability. There were three categories of factors influencing the integration process: 1) the clinical evolution of HAT, 2) the organization of health services, and 3) the diagnostic and therapeutic tools. There is a consensus that both active and passive approaches to HAT case detection and surveillance need to be combined, in a context-sensitive way. However, apart from some documentation about the constraints faced by local health services, there is little evidence on how this synergy is best achieved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838596PMC
http://dx.doi.org/10.4269/ajtmh.19-0232DOI Listing

Publication Analysis

Top Keywords

hat control
12
integration process
12
human african
8
african trypanosomiasis
8
control activities
8
activities primary
8
primary healthcare
8
healthcare services
8
scoping review
8
health services
8

Similar Publications

INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells.

View Article and Find Full Text PDF

Methane emissions from ruminant digestion contribute significantly to global anthropogenic greenhouse gas emissions. Members of the phylum Rhodophyta (red algae), particularly Asparagopsis sp., have shown promising results in reducing methane emissions in ruminants, due to their high content of halogenated methane analog compounds.

View Article and Find Full Text PDF

The second 3d-transition metal incorporation in Ni-(oxy)hydroxide has a drastic effect on alkaline OER and alcohol dehydrogenation reactivity. While Mn incorporation suppresses the alkaline OER, it greatly improves the alcohol dehydrogenation reactivity. A complete reversal of reactivity is obtained when Fe is incorporated, which shows better performance for alkaline OER with poor alcohol dehydrogenation reactivity.

View Article and Find Full Text PDF

Military breachers are routinely exposed to repetitive low-level blast overpressure, placing them at elevated risk for long-term neurological sequelae. Mounting evidence suggests that circulating brain-reactive autoantibodies, generated following CNS injury, may serve as both biomarkers of cumulative damage and drivers of secondary neuroinflammation. In this study, we compared circulating autoantibody profiles in military breachers ( = 18) with extensive blast exposure against unexposed military controls ( = 19).

View Article and Find Full Text PDF

Pacific white shrimp shell protein hydrolysates (SSPHs) produced using alcalase (UAH) and papain (UPH), and polyphenols (PPNs) conjugates were prepared using variable concentrations (0.5-3% /) of different polyphenols (EGCG, catechin, and gallic acid). When 2% (/) of a redox pair was used for conjugation, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!