Mass mortalities due to disease outbreaks have recently affected a number of major taxa in marine ecosystems. Climate- and pollution-induced stress may compromise host immune defenses, increasing the risk of opportunistic diseases. Despite growing evidence that mass mortality events affecting marine species worldwide are strongly influenced by the interplay of numerous environmental factors, the reductionist approaches most frequently used to investigate these factors hindered the interpretation of these multifactorial pathologies. In this study, we propose a broader approach based on the combination of RNA-sequencing and 16S microbiota analyses to decipher the factors underlying mass mortality in the striped venus clam, Chamelea gallina, along the Adriatic coast. On one hand, gene expression profiling and functional analyses of microbial communities showed the over-expression of several genes and molecular pathways involved in xenobiotic metabolism, suggesting potential chemical contamination in mortality sites. On the other hand, the down-regulation of several genes involved in immune and stress response, and the over-representation of opportunistic pathogens such as Vibrio and Photobacterium spp. indicates that these microbial species may take advantage of compromised host immune pathways and defense mechanisms that are potentially affected by chemical exposure, resulting in periodic mortality events. We propose the application of our approach to interpret and anticipate the risks inherent in the combined effects of pollutants and microbes on marine animals in today's rapidly changing environment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.15227DOI Listing

Publication Analysis

Top Keywords

mortality events
12
striped venus
8
venus clam
8
clam chamelea
8
chamelea gallina
8
host immune
8
mass mortality
8
mortality
5
host-microbiota interactions
4
interactions light
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!