The effect of ferulic acid against lead-induced oxidative stress and DNA damage in kidney and testes of rats.

Environ Sci Pollut Res Int

Department of Molecular Drug Evaluation, National Organization for Drug Control & Research (NODCAR), Giza, Egypt.

Published: November 2019

Oxidative stress is an imbalance between free radicals and antioxidants which leads to reactive oxygen species (ROS) production in cells. Reactive oxygen species contains oxygen radicals that easily react with other molecules in the biological system. For decades, lead acetate (Pb(CHO2)) is used as an additive for many widely used chemical products such as insecticides, hair dyes, and cosmetics; however, contact with lead acetate may irritate skin, eyes, and mucous membranes.In the present study, the antioxidant and anti-inflammatory effect of using ferulic acid to inhibit lead acetate-induced toxicity in rats is investigated. Lead acetate was orally given at a dose of 20 mg/kg body weight for 10 days, either alone or with ferulic acid at dose 25 mg/kg. Serum luteinizing hormone (LH), total testosterone, and follicle-stimulating hormone (FSH) levels were measured. Also, reactive oxygen species (ROS), lipid peroxidation (LPO), total antioxidant capacity (TAC), and catalase (CAT) activities were determined. In addition, histopathological changes of testes and kidney were examined. Results showed that administration of lead acetate induced oxidative stress through attenuation of luteinizing hormone, total testosterone, and follicle-stimulating hormone levels in serum. Moreover, the kidney and testes of lead acetate-treated animals exhibited elevation of ROS level, lipid peroxide levels, as well as lysosomal enzyme activity such acid phosphatase and N-acetyl-β-glucosminidase. DNA fragmentation and histological changes were also observed in lead acetate-treated group. In contrast, ferulic acid treatment reduced the deleterious effects induced by lead acetate in both testes and kidney tissues. These results illustrated that ferulic acid has a protective action against toxicity caused by lead acetate in rats. In conclusions, ferulic acid may have future therapeutic relevance in the prevention of lead acetate-induced testicular and renal toxicity in rats.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-06099-6DOI Listing

Publication Analysis

Top Keywords

ferulic acid
24
lead acetate
24
oxidative stress
12
reactive oxygen
12
oxygen species
12
lead
10
kidney testes
8
species ros
8
lead acetate-induced
8
toxicity rats
8

Similar Publications

Militarine is a monomer molecule with abundant and distinctive biological properties, also the lead member of secondary metabolites in Bletilla striata, while its biosynthesis mechanism is still unknown. To improve the production efficiency of militarine, sodium acetate and salicylic acid (SA) were introduced as elicitors into the suspension-cultured callus of B. striata.

View Article and Find Full Text PDF

Acetyl xylan esterase plays a crucial role in the degradation of xylan, the major plant hemicellulose, by liberating acetic acid from the backbone polysaccharides. Acetyl xylan esterase B from Aspergillus oryzae, designated AoAxeB, was biochemically and structurally investigated. The AoAxeB-encoding gene with a native signal peptide was successfully expressed in Pichia pastoris as an active extracellular protein.

View Article and Find Full Text PDF

Engineering yeast to produce fraxetin from ferulic acid and lignin.

Appl Microbiol Biotechnol

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.

Lignin, the most abundant renewable source of aromatic compounds on earth, remains underexploited in traditional biorefining. Fraxetin, a naturally occurring flavonoid, has garnered considerable attention in the scientific community due to its diverse and potent biological activities such as antimicrobial, anticancer, antioxidant, anti-inflammatory, and neurological protective actions. To enhance the green and value-added utilization of lignin, Saccharomyces cerevisiae was engineered as a cell factory to transform lignin derivatives to produce fraxetin.

View Article and Find Full Text PDF

Hydrodynamic cavitation induced fabrication of soy protein isolate-polyphenol complexes: Structural and functional properties.

Curr Res Food Sci

January 2025

School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China.

The combination of polyphenols and protein can improve the functional characteristics of protein. How to effectively promote the binding of polyphenols to protein is still a difficult topic. In this study, hydrodynamic cavitation (HC) was used to induce the fabrication of complexes between soy protein isolate (SPI) and different polyphenols (tannic acid (TA), chlorogenic acid (CGA), ferulic acid (FA), caffeic acid (CA), and gallic acid (GA)).

View Article and Find Full Text PDF

Introduction: Fungal endophytes have mutualistic associations with the plant's host, communicating through genetic and metabolic processes. As a result, they gain the ability to generate therapeutically effective metabolites and their derivatives.

Methods: The current study aims to assess antioxidant potential along with the identification of robust metabolites within the crude extract of a potent endophytic fungus Xylaria ellisii isolated from leaf tissues of the Acorus calamus Linn plant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!