Antibiotics have saved millions of lives. However, the overuse and misuse of antibiotics have contributed to a rapid emergence of antibiotic resistance worldwide. In addition, there is an unprecedented void in the development of new antibiotic classes by the pharmaceutical industry since the first introduction of antibiotics. This antibiotic crisis underscores the urgent and increasing necessity of new, innovative antibiotics. Enzybiotics are such a promising class of antibiotics. They are derived from endolysins, bacteriophage-encoded enzymes that degrade the bacterial cell wall of the infected cell at the end of the lytic replication cycle. Enzybiotics are featured by a rapid and unique mode-of-action, a high specificity to kill pathogens, a low probability for bacterial resistance development and a proteinaceous nature. (Engineered) endolysins have been demonstrated to be effective in a variety of animal models to combat both Gram-positive and Gram-negative bacteria and have entered different phases of preclinical and clinical trials. In addition, mycobacteriophage-encoded endolysins have been successfully used to inhibit mycobacteria in vitro. In this chapter we focus on the (pre)clinical progress of enzybiotics as potent therapeutic agent against human pathogenic bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-981-13-7709-9_11 | DOI Listing |
BMC Pediatr
January 2025
Biomedical and Clinical Research Centre, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
Purpose: To elucidate the global epidemiology of Ophthalmia Neonatorum (ON), as well as its causative organisms and their antibiotic susceptibility patterns.
Methods: A systematic review of studies reporting the epidemiology of ON was performed using four electronic databases: PubMed, Scopus, Web of Science, and Medline. Data were extracted and study-specific estimates were combined using meta-analysis to obtain pooled proportions.
J Inflamm (Lond)
January 2025
Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
Clostridioides difficile, a spore-forming anaerobic bacterium, is the primary cause of hospital antibiotic-associated diarrhea. Key virulence factors, toxins A (TcdA) and B (TcdB), significantly contribute to C. difficile infection (CDI).
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Public Health Medicine, Faculty of Medicine, National University of Malaysia, Federal Territory of Kuala Lumpur, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Malaysia.
Introduction: Antimicrobial resistance is a global issue, with the World Health Organization identifying it as one of the greatest threats to public health, with an estimated 4.95 million deaths linked to bacterial AMR in 2019. Our study aimed to determine the prevalence of mortality among multidrug-resistant organism (MDRO)-infected patients in state hospitals and major specialist hospitals and to identify risk factors that could be associated with mortality outcomes.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Microbiology and Immunology Department, October University for Modern Sciences and Arts (MSA), Giza, Egypt.
Background: Strain Cyp38S was isolated as an endophyte from the plant Cyperus alternifolius, collected along the banks of the River Nile in 2019. Preliminary analysis tentatively identified Cyp38S as belonging to the genus Pseudocitrobacter.
Methods: The preliminary identification of Cyp38S was performed using the VITEK2 identification system, MALDI-TOF-MS, and 16S rRNA gene sequencing.
Mikrochim Acta
January 2025
Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China.
Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!