A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acute fluoride exposure alters myocardial redox and inflammatory markers in rats. | LitMetric

Acute fluoride exposure alters myocardial redox and inflammatory markers in rats.

Mol Biol Rep

Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, 641 046, India.

Published: December 2019

Acute fluoride (F) exposure adversely impairs cardiac functions. We previously reported that acute F toxicity causes modulation in oxidant and antioxidant systems, heat shock proteins, cytoskeletal proteins and AMPK signaling proteins in the myocardium of rats. With these findings, we hypothesized that acute F intoxication may trigger an acute myocardial inflammatory response through the activation of NF-κB signaling and reduction of redox signaling regulatory system. To test this hypothesis, we treated male Wistar rats with single oral doses of 45 and 90 mg/kg of F for 24 h. The myocardium of F treated rats showed increased expression of pNF-κB, pIκKα/β eventually leading to the increased expression of downstream target TNFα-a major proinflammatory cytokine secreted in the inflammatory process. F intoxication decreased the mRNA expression of redox genes-Sirt1, Sirt3, Prdx2, Glrx1, Trx1, and Trx2. In addition, we observed decreased protein expression of Nrf2, GCLC, and NQO1 in the cardiac tissues of F treated rats. This study reveals that F toxicity triggers myocardial inflammatory response and depletes redox signaling molecules in the myocardium of rats. We conclude that NF-κB activation with decreased redox gene expression might be associated with the pathophysiology of F induced cardiac dysfunction in rats. This finding provides new insights into the cardiovascular pathophysiology in acute F toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-019-05050-9DOI Listing

Publication Analysis

Top Keywords

acute fluoride
8
fluoride exposure
8
acute toxicity
8
myocardium rats
8
myocardial inflammatory
8
inflammatory response
8
redox signaling
8
treated rats
8
increased expression
8
rats
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!