In the literature, there are reports of the utilization of various hydrogels to create generic platforms for protein microarray applications. Here, a novel strategy was developed to obtain high-performance microarrays. In it, a dextran hydrogel is used to covalently immobilize oligonucleotides and proteins. This method employs aqueous solutions of dextran methacrylate (Dx-MA), which is a biocompatible photopolymerizable monomer. Capture probes are immobilized inside the hydrogel via a light-induced thiol-acrylate coupling reaction at the same time as the dextran polymer is formed. Hydrogel microarrays based on this technique were prepared on different surfaces, such as a Blu-ray Disk and polycarbonate or alkene-functionalized glass slides, and these systems showed high probe-loading capabilities and good biorecognition yields. This methodology presents advantages such as a low cost, a short analysis time, a low limit of detection, and multiplexing capabilities, among others. Confocal fluorescence microscopy analysis demonstrated that in these hydrogel-based microarrays, receptor immobilization and the biorecognition event occurred within the hydrogel and not merely on the surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-019-02050-3 | DOI Listing |
Chemistry
December 2024
Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.
Trifluoromethylarenes (ArCF) are crucial bioisosteres in medicinal chemistry, but catalyst-free and controlled photo-activation of the ArC(sp)-F bond remains a significant challenge. The photo-induced defluorination acyl fluoride exchange (photo-DAFEx) of m-trifluoromethylaniline, induced by ultraviolet light, emerges as a promising novel photo-click reaction for photoaffinity drug discovery. However, the photophysical properties of NMePhFC(sp)-F derivatives and factors affecting ArC(sp)-F bond activation in photo-DAFEx are not yet fully understood, hindering the development of new photo-defluorination reagents with longer absorption wavelength for the photo-DAFEx.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK. Electronic address:
Controllable surface modification of nanoparticulate drug delivery vectors is key to enhancing specific desirable properties such as colloidal stability, targeting, and stimuli-responsive cargo release. Metal-organic frameworks (MOFs) have been proposed as potential delivery devices, with surface modification achieved by various bioconjugate "click" reactions, including copper-catalysed and strain-promoted azide-alkyne cycloaddition. Herein, we show that photo-induced nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) can be used to surface-modify tetrazole-appended Zr MOFs with maleimides, and vice versa, with the extent of this traceless surface functionalisation controlled by the length of photoirradiation.
View Article and Find Full Text PDFOrg Lett
December 2024
School of Chemistry, University College Dublin, O'Brien Centre for Science, Belfield, Dublin 4, Ireland.
Continuous flow technology was exploited for the effective generation of nitrile imines via photolysis of substituted aryl tetrazoles. The resulting photo-click process rapidly affords advanced nitrogen-rich scaffolds upon the subsequent trapping of the reactive dipole with alkenes, alkynes, and benzylic amines. Crucially, this approach uncovers the differential reactivity for ether vs amine tethers, thus providing facile and scalable access to underexplored medicinally relevant heterocyclic entities.
View Article and Find Full Text PDFBiomed Mater
November 2024
Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America.
Thiol-norbornene photoclick hydrogels are highly efficient in tissue engineering applications due to their fast gelation, cytocompatibility, and tunability. In this work, we utilized the advantageous features of polyethylene glycol (PEG)-thiol-ene resins to enable fabrication of complex and heterogeneous tissue scaffolds using 3D bioprinting and in-air drop encapsulation techniques. We demonstrated that photoclickable PEG-thiol-ene resins could be tuned by varying the ratio of PEG-dithiol to PEG norbornene to generate a wide range of mechanical stiffness (0.
View Article and Find Full Text PDFBiomacromolecules
December 2024
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
Four biobased phosphate-containing aryl monomers with methoxy, allyl, and vinyl groups as substituents have been successfully synthesized. Copolymerizing these monomers with thiophenol or mercaptans via the photoclick thiol-ene reaction gives the polymers with refractive indices () of 1.63-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!