Implantable drug delivery systems, such as drug pumps and polymeric drug depots, have emerged as means of providing predetermined drug release profiles at the desired site of action. While initial implants aimed at providing an enduring drug supply, developments in polymer chemistry and pharmaceutical technology and the growing need for refined drug delivery patterns have prompted the design of sophisticated drug delivery implants such as on-demand drug-eluting implants and personalized 3D printed implants. The types of cargo loaded into these implants range from small drug molecules to hormones and even therapeutic cells. This review will shed light upon recent advances in materials and composites used for polymeric implant fabrication, highlight select approaches employed in polymeric implant fabrication, feature medical applications where polymeric implants have a significant impact, and report recent advances made in these areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12249-019-1510-0 | DOI Listing |
Biomater Adv
January 2025
Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China. Electronic address:
The current unavailability of efficient myocardial repair therapies constitutes a significant bottleneck in the clinical management of myocardial infarction (MI). Ginsenoside Rb1 (GRb1) has emerged as a compound with potential benefits in safeguarding myocardial cells and facilitating the regeneration of myocardial tissue. However, its efficacy in treating MI-related ischemic conditions is hampered by its low bioavailability and inadequate angiogenic properties.
View Article and Find Full Text PDFBiomater Adv
January 2025
Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France. Electronic address:
Abdominal hernia repair is a common surgical procedure, involving in most cases the use of textile meshes providing a mechanical barrier to consolidate the damaged surrounding tissues and prevent the resurgence of the hernia. However, in more than half cases postoperative complications such as adhesions and infections occur at the surface of the mesh, leading to chronic pain for the patient and requiring the removal of the implant. One of the most promising strategies to reduce the risk of postoperative adhesions and infections is to add a physical barrier between the mesh and the abdominal walls.
View Article and Find Full Text PDFNeuromodulation
January 2025
Department of Anesthesiology, University of Wisconsin, Madison, WI, USA.
Objectives: Past studies have shown the efficacy of spinal targeted drug delivery (TDD) in pain relief, reduction in opioid use, and cost-effectiveness in long-term management of complex chronic pain. We conducted a survey to determine treatment variables associated with patient satisfaction.
Materials And Methods: Patients in a single pain clinic who were implanted with Medtronic pain pumps to relieve intractable pain were identified from our electronic health record.
Adv Sci (Weinh)
January 2025
Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!