The aim of this study was to determine the influence of two types of UV-A LEDs on the growth and accumulation of phytochemicals in kale ( var. ). Fourteen-day-old kale seedlings were transferred to a growth chamber and cultivated for 3 weeks. The kale plants were subsequently subjected to two types of UV-A LEDs (370 and 385 nm) of 30 W/m for 5 days. Growth characteristics were all significantly increased in plants exposed to UV-A LEDs, especially at the 385 nm level, for which dry weight of shoots and roots were significantly increased by 2.22 and 2.5 times, respectively, at 5 days of treatment. Maximum quantum efficiency of photosystem II photochemistry (Fv/Fm ratio) began to decrease after 3 h of treatment compared to the control. The total phenolic content of plants exposed to the two types of UV-A LEDs increased by 25% at 370 nm and 42% at 385 nm at 5 days of treatment, and antioxidant capacity also increased. The two types of UV-A LEDs also induced increasing contents of caffeic acid, ferulic acid, and kaempferol. The reactive oxygen species (ROS) temporarily increased in plants exposed to the two types of UV-A LEDs after 3 h of treatment. Moreover, transcript levels of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and flavanone 3-hydroxylase (F3H) genes and PAL enzyme activity were higher in plants treated with UV-A LEDs. Our results suggested that short-term UV-A LEDs were effective in increasing growth and improving antioxidant phenolic compounds in kale, thereby representing a potentially effective strategy for enhancing the production of phytochemicals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710713PMC
http://dx.doi.org/10.3389/fpls.2019.01042DOI Listing

Publication Analysis

Top Keywords

uv-a leds
32
types uv-a
20
plants exposed
12
uv-a
9
compounds kale
8
leds
8
increased plants
8
days treatment
8
3 h treatment
8
exposed types
8

Similar Publications

UV-A Flexible LEDs Based on Core-Shell GaN/AlGaN Quantum Well Microwires.

ACS Appl Mater Interfaces

September 2024

Centre de Nanosciences et de Nanotechnologies (C2N), UMR 9001 CNRS, Univ. Paris-Saclay, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France.

Nanostructured ultraviolet (UV) light sources represent a growing research field in view of their potential applications in wearable optoelectronics or medical treatment devices. In this work, we report the demonstration of the first flexible UV-A light emitting diode (LED) based on AlGaN/GaN core-shell microwires. The device is based on a composite microwire/poly(dimethylsiloxane) (PDMS) membrane with flexible transparent electrodes.

View Article and Find Full Text PDF

A continuous flow approach for the aerobic photo-oxidation of benzylic substrates to ketone and aldehyde products is presented. The resulting process exploits UV-A LEDs (375 nm) in combination with a Corning AFR reactor that ensures effective gas-liquid mixing and leads to short residence times of 1 min. A variety of benzylic substrates are converted to their corresponding carbonyl products, and scalability is demonstrated to produce multigram quantities of products within a few hours.

View Article and Find Full Text PDF

UV-A treatment of phenolic extracts impacts colour, bioactive compounds and antioxidant activity.

J Sci Food Agric

December 2024

Department of Agronomy, Food, Natural Resources, Animals, and Environment - DAFNAE, University of Padova, Legnaro, Italy.

Background: The unintended co-extraction of chlorophylls during the recovery of polyphenols from plant sources yields green-coloured phenolic extracts with limited use in colour-sensitive foods. This study aimed at decolourizing the ethanolic extracts of sugar beet leaves using a UV-A treatment (390 nm).

Results: Exposure of the phenolic extracts to 30 UV-A LEDs at 8.

View Article and Find Full Text PDF

Protecting against micropollutants in water storage tanks using in-situ TiO coated quartz optical fibers.

Water Res

June 2024

Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China. Electronic address:

Photocatalyst-coated optical fibers (P-OFs) using UV-A LEDs offer a highly promising solution for the degradation of micropollutants within municipal, reuse, industrial or home distribution systems, by integrating P-OFs into water storage tanks. P-OFs have photocatalysts attached to bundles of optical fibers, enabling their direct deployment within tanks. This eliminates the necessity for photocatalyst slurries, which would require additional membrane or separation systems.

View Article and Find Full Text PDF

Water scarcity and contamination are urgent issues to be addressed. In this context, different materials, techniques, and devices are being developed to mitigate contemporary and forthcoming water constraints. Photocatalysis-based approaches are suitable strategies to address water contamination by degrading contaminants and eliminating microbes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!