The molecular events leading to differentiation, development, and plasticity of lymphoid cells have been subject of intense research due to their key roles in multiple pathologies, such as lymphoproliferative disorders, tumor growth maintenance and chronic diseases. The emergent roles of lymphoid cells and the use of high-throughput technologies have led to an extensive accumulation of experimental data allowing the reconstruction of gene regulatory networks (GRN) by integrating biochemical signals provided by the microenvironment with transcriptional modules of lineage-specific genes. Computational modeling of GRN has been useful for the identification of molecular switches involved in lymphoid specification, prediction of microenvironment-dependent cell plasticity, and analyses of signaling events occurring downstream the activation of antigen recognition receptors. Among most common modeling strategies to analyze the dynamical behavior of GRN, discrete dynamic models are widely used for their capacity to capture molecular interactions when a limited knowledge of kinetic parameters is present. However, they are less powerful when modeling complex systems sensitive to biochemical gradients. To compensate it, discrete models may be transformed into regulatory networks that includes state variables and parameters varying within a continuous range. This approach is based on a system of differential equations dynamics with regulatory interactions described by fuzzy logic propositions. Here, we discuss the applicability of this method on modeling of development and plasticity processes of adaptive lymphocytes, and its potential implications in the study of pathological landscapes associated to chronic diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710364 | PMC |
http://dx.doi.org/10.3389/fimmu.2019.01927 | DOI Listing |
A method involving gas chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry (GC-Q/Orbitrap HRMS) with the QuEChERS method was developed to analyze 36 non-phthalate plasticizers in milk powder products. The samples were dissolved in 20% NaCl, extracted with acetonitrile, and purified using silica, PSA, and C. The results showed the excellent linear relationship of the calibration curves of 36 non-phthalate plasticizers in the range of 10-1000 ng mL, with correlation coefficients () not less than 0.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Solar-powered electrochemical NH synthesis offers the benefits of sustainability and absence of CO emissions but suffers from a poor solar-to-ammonia yield rate (SAY) due to a low NH selectivity, large bias caused by the sluggish oxygen evolution reaction, and low photocurrent in the corresponding photovoltaics. Herein, a highly efficient photovoltaic-electrocatalytic system enabling high-rate solar-driven NH synthesis was developed. A high-performance Ru-doped Co nanotube catalyst was used to selectively promote the nitrite reduction reaction (NORR), exhibiting a faradaic efficiency of 99.
View Article and Find Full Text PDFJ Plast Surg Hand Surg
January 2025
Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden; Department of Oral and Maxillofacial Surgery, Skåne University Hospital, Malmö, Sweden; Department of Orthodontics, Malmö University, Malmö, Sweden.
Pre- and postoperative photos to assess results are widely used in plastic and reconstructive surgery, for instance, in patients with cleft lip and palate (CL/P). Evaluations are often performed by assessment panels by viewing the photos. However, these are prone to be subjective.
View Article and Find Full Text PDFCleft Palate Craniofac J
January 2025
Seattle Children's Hospital, Craniofacial Center, Seattle, WA, USA.
Objective: To investigate whether differences in early cleft care increase risk of velopharyngeal insufficiency (VPI) after maxillary advancement.
Design: Retrospective cohort study.
Setting: Large pediatric tertiary care hospital.
J Dent Sci
January 2025
School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Background/purpose: Identifying crestal bone level (CBL) on the buccal and lingual aspects poses challenges in conventional dental radiographs. Given that optical coherence tomography (OCT) has the capability to non-invasively provide in-depth information about the periodontium, this in vitro study aimed to assess whether OCT can effectively identify periodontal landmarks and measure CBL in the presence of gingiva.
Materials And Methods: An in-house handheld scanning probe connected to a 1310-nm swept-source OCT (SS-OCT) system, along with self-developed algorithms were employed to measure the CBL in dental models with artificial gingiva.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!