M1-like macrophage polarization prevails in young children with classic Hodgkin Lymphoma from Argentina.

Sci Rep

Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.

Published: September 2019

The microenvironment in classical Hodgkin lymphoma (cHL) comprises a mixture of different types of cells, which are responsible for lymphoma pathogenesis and progression. Even though microenvironment composition in adult cHL has been largely studied, only few groups studied pediatric cHL, in which both Epstein Barr virus (EBV) infection and age may display a role in their pathogenesis. Furthermore, our group described that EBV is significantly associated with cHL in Argentina in patients under the age of 10 years old. For that reason, our aim was to describe the microenvironment composition in 46 pediatric cHL patients. M1-like polarization status prevailed in the whole series independently of EBV association. On the other hand, in children older than 10 years, a tolerogenic environment illustrated by higher FOXP3 expression was proved, accompanied by a macrophage polarization status towards M2. In contrast, in children younger than 10 years, M1-like was prevalent, along with an increase in cytotoxic GrB+ cells. This study supports the notion that pediatric cHL exhibits a particular tumor microenvironment composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722052PMC
http://dx.doi.org/10.1038/s41598-019-49015-1DOI Listing

Publication Analysis

Top Keywords

microenvironment composition
12
pediatric chl
12
macrophage polarization
8
hodgkin lymphoma
8
polarization status
8
chl
6
m1-like macrophage
4
polarization prevails
4
prevails young
4
young children
4

Similar Publications

The tumor microenvironment (TME) is characterized by several key features, including hypoxia, elevated levels of hydrogen peroxide (HO), high concentrations of glutathione (GSH), and an acidic pH. Recent research has increasingly focused on harnessing or targeting these characteristics for effective cancer therapy. In this study, we developed an innovative composite bio-reactor that integrates genetically engineered bacteria with upconversion nanoparticles (UCNPs) and nano-copper manganese materials for lung cancer treatment.

View Article and Find Full Text PDF

The imbalance of redox homeostasis, especially the abnormal levels of reactive oxygen species (ROS), is a key obstacle in the bone repair process. Therefore, developing materials capable of scavenging ROS and modulating the microenvironment of bone defects is crucial for promoting bone repair. In this study, to endow poly(amino acids) (PAA) and its composites with anti-oxidative stress properties and enhanced osteogenic differentiation, we designed and prepared a calcium sulfate/calcium hydrogen phosphate/poly(amino acids) (PCDM) composite material with a thioether structure (-S-) in the molecular chain of PAA matrix through situ polymerization and physical blending method.

View Article and Find Full Text PDF

Background: Complex interrelationships between the microbiota and cancer have been identified by several studies. However, despite delineating microbial composition in non-small cell lung cancer (NSCLC), key pathogenic microbiota and their underlying mechanisms remain unclear.

Methods: We performed 16S rRNA V3-V4 amplicon and transcriptome sequencing on cancerous and adjacent normal tissue samples from 30 patients with NSCLC, from which clinical characteristics and prognosis outcomes were collected.

View Article and Find Full Text PDF

Non-coding RNAs secreted by renal cancer include piR_004153 that promotes migration of mesenchymal stromal cells.

Cell Commun Signal

January 2025

Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland.

Background: Renal cell cancer (RCC) is the most common and highly malignant subtype of kidney cancer. Mesenchymal stromal cells (MSCs) are components of tumor microenvironment (TME) that influence RCC progression. The impact of RCC-secreted small non-coding RNAs (sncRNAs) on TME is largely underexplored.

View Article and Find Full Text PDF

Decellularized cartilage tissue bioink formulation for osteochondral graft development.

Biomed Mater

January 2025

Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.

Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!