The microenvironment in classical Hodgkin lymphoma (cHL) comprises a mixture of different types of cells, which are responsible for lymphoma pathogenesis and progression. Even though microenvironment composition in adult cHL has been largely studied, only few groups studied pediatric cHL, in which both Epstein Barr virus (EBV) infection and age may display a role in their pathogenesis. Furthermore, our group described that EBV is significantly associated with cHL in Argentina in patients under the age of 10 years old. For that reason, our aim was to describe the microenvironment composition in 46 pediatric cHL patients. M1-like polarization status prevailed in the whole series independently of EBV association. On the other hand, in children older than 10 years, a tolerogenic environment illustrated by higher FOXP3 expression was proved, accompanied by a macrophage polarization status towards M2. In contrast, in children younger than 10 years, M1-like was prevalent, along with an increase in cytotoxic GrB+ cells. This study supports the notion that pediatric cHL exhibits a particular tumor microenvironment composition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722052 | PMC |
http://dx.doi.org/10.1038/s41598-019-49015-1 | DOI Listing |
J Colloid Interface Sci
January 2025
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China. Electronic address:
The tumor microenvironment (TME) is characterized by several key features, including hypoxia, elevated levels of hydrogen peroxide (HO), high concentrations of glutathione (GSH), and an acidic pH. Recent research has increasingly focused on harnessing or targeting these characteristics for effective cancer therapy. In this study, we developed an innovative composite bio-reactor that integrates genetically engineered bacteria with upconversion nanoparticles (UCNPs) and nano-copper manganese materials for lung cancer treatment.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China. Electronic address:
The imbalance of redox homeostasis, especially the abnormal levels of reactive oxygen species (ROS), is a key obstacle in the bone repair process. Therefore, developing materials capable of scavenging ROS and modulating the microenvironment of bone defects is crucial for promoting bone repair. In this study, to endow poly(amino acids) (PAA) and its composites with anti-oxidative stress properties and enhanced osteogenic differentiation, we designed and prepared a calcium sulfate/calcium hydrogen phosphate/poly(amino acids) (PCDM) composite material with a thioether structure (-S-) in the molecular chain of PAA matrix through situ polymerization and physical blending method.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
Background: Complex interrelationships between the microbiota and cancer have been identified by several studies. However, despite delineating microbial composition in non-small cell lung cancer (NSCLC), key pathogenic microbiota and their underlying mechanisms remain unclear.
Methods: We performed 16S rRNA V3-V4 amplicon and transcriptome sequencing on cancerous and adjacent normal tissue samples from 30 patients with NSCLC, from which clinical characteristics and prognosis outcomes were collected.
Cell Commun Signal
January 2025
Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland.
Background: Renal cell cancer (RCC) is the most common and highly malignant subtype of kidney cancer. Mesenchymal stromal cells (MSCs) are components of tumor microenvironment (TME) that influence RCC progression. The impact of RCC-secreted small non-coding RNAs (sncRNAs) on TME is largely underexplored.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.
Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!