Multiple Emulsions (MEs) contain a drop laden with many micro-droplets. A single-step microfluidic-based synthesis process of MEs is presented to provide a rapid and controlled generation of monodisperse MEs. The design relies on the interaction of three immiscible fluids with each other in subsequent droplet formation steps to generate monodisperse ME constructs. The design is within a microchannel consists of two compartments of cross-junction and T-junction. The high shear stress at the cross-junction creates a stagnation point that splits the first immiscible phase to four jet streams each of which are sprayed to micrometer droplets surrounded by the second phase. The resulted structure is then supported by the third phase at the T-junction to generate and transport MEs. The ME formation within microfluidics is numerically simulated and the effects of several key parameters on properties of MEs are investigated. The dimensionless modeling of ME formation enables to change only one parameter at the time and analyze the sensitivity of the system to each parameter. The results demonstrate the capability of highly controlled and high-throughput MEs formation in a one-step synthesis process. The consecutive MEs are monodisperse in size which open avenues for the generation of controlled MEs for different applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722102PMC
http://dx.doi.org/10.1038/s41598-019-49136-7DOI Listing

Publication Analysis

Top Keywords

highly controlled
8
controlled generation
8
generation monodisperse
8
multiple emulsions
8
mes
8
synthesis process
8
mes formation
8
rapid highly
4
controlled
4
monodisperse
4

Similar Publications

Inducible protein switches are currently limited for use in tissues and organisms because common inducers cannot be controlled with precision in space and time in optically dense settings. Here, we introduce a protein that can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization using temperature) oligomerizes and translocates to the plasma membrane when temperature is lowered.

View Article and Find Full Text PDF

Background: Pericardial complications following cardiac surgery are common and debilitating, significantly impacting patients' survival. We performed this network meta-analysis to identify the most effective and safest preventions and treatments for pericardial complications following cardiac surgery.

Methods: We systematically searched PubMed/MEDLINE, EMBASE and Cochrane CENTRAL from inception to 22 January 2024.

View Article and Find Full Text PDF

The assessment of early atherosclerosis (AS) via fluorescence imaging is crucial for advancing early diagnosis research. Abnormal inflammation biomarkers, including hypochlorous acid (HClO) and viscosity within mitochondria, have been closely linked to the pathogenesis of AS. However, current fluorescent probes predominantly rely on unimodal imaging that targets a single biomarker and lacks mitochondrial specificity, which can result in potential false signal readouts due to the complex intracellular environment.

View Article and Find Full Text PDF

Design and synthesis of Pt/TiO catalyst with abundant surface hydroxyl for formaldehyde oxidation.

J Hazard Mater

January 2025

School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China. Electronic address:

Catalytic oxidation of formaldehyde (HCHO) is a highly effective method for indoor HCHO removal. However, many aspects of the catalytic mechanism remain unclear, making the optimization of catalysts largely empirical. Herein, we report a coupled experimental and computational study of Pt/TiO catalysts, with special focus on the functional roles of surface oxygen vacancies and hydroxyl groups in the catalytic oxidation of HCHO.

View Article and Find Full Text PDF

Metabolic activity controls the emergence of coherent flows in microbial suspensions.

Proc Natl Acad Sci U S A

January 2025

Experimental Physics V, Department of Physics, University of Bayreuth, D-95447 Bayreuth, Germany.

Photosynthetic microbes have evolved and successfully adapted to the ever-changing environmental conditions in complex microhabitats throughout almost all ecosystems on Earth. In the absence of light, they can sustain their biological functionalities through aerobic respiration, and even in anoxic conditions through anaerobic metabolic activity. For a suspension of photosynthetic microbes in an anaerobic environment, individual cellular motility is directly controlled by its photosynthetic activity, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!