Migration from the primary tumor is a crucial step in the metastatic cascade. Cells with various degrees of adhesion and motility migrate and are launched into the bloodstream as single circulating tumor cells (CTC) or multicellular CTC clusters. The frequency and size distributions of these clusters have been recently measured, but the underlying mechanisms enabling these different modes of migration remain poorly understood. We present a biophysical model that couples the phenotypic plasticity enabled by the epithelial-mesenchymal transition (EMT) and cell migration to explain the modes of individual and collective cancer cell migration. This reduced physical model captures how cells undergo a transition from individual migration to collective cell migration and robustly recapitulates CTC cluster fractions and size distributions observed experimentally across several cancer types, thus suggesting the existence of common features in the mechanisms underlying cancer cell migration. Furthermore, we identify mechanisms that can maximize the fraction of CTC clusters in circulation. First, mechanisms that prevent a complete EMT and instead increase the population of hybrid epithelial/mesenchymal (E/M) cells are required to recapitulate CTC size distributions with large clusters of 5 to 10 cells. Second, multiple intermediate E/M states give rise to larger and heterogeneous clusters formed by cells with different epithelial-mesenchymal traits. Overall, this biophysical model provides a platform to continue to bridge the gap between the molecular and biophysical regulation of cancer cell migration and highlights that a complete EMT might not be required for metastasis. SIGNIFICANCE: A biophysical model of cancer cell invasion integrates phenotypic heterogeneity and cell migration to interpret experimental observations of circulating tumor cell clusters and provides new predictions. http://cancerres.aacrjournals.org/content/canres/79/21/5527/F1.large.jpg.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-19-1726 | DOI Listing |
Biol Res
January 2025
School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.
View Article and Find Full Text PDFBMC Cancer
January 2025
Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
Background: Head and neck squamous cell carcinoma (HNSCC), a highly invasive malignancy with a poor prognosis, is one of the most common cancers globally. Circular RNAs (circRNAs) have become key regulators of human malignancies, but further studies are necessary to fully understand their functions and possible causes in HNSCC.
Methods: CircCCT2 expression levels in HNSCC tissues and cells were measured via qPCR.
BMC Cancer
January 2025
Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China.
Background: Hepatocellular carcinoma (HCC) is a prevalent primary liver malignancy and a leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, the 5-year survival rate for individuals undergoing curative resection remains between 10% and 15%. Consequently, identifying molecular targets that specifically inhibit the proliferation and metastasis of HCC cells is critical for improving treatment outcomes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, China.
MicroRNA (miRNA) dysregulation has been identified in several carcinomas, including non-small cell lung cancer (NSCLC), and is known to play a role in the development and progression of this disease. We initially conducted a miRNA microarray analysis, which revealed that the MNK inhibitor CGP57380 increased the expression of miR-150-3p. A similar analysis was performed using data from The Cancer Genome Atlas (TCGA).
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
The emergence of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has improved the prognosis for lung cancer patients with EGFR-driven mutations. However, acquired resistance to EGFR-TKIs poses a significant challenge to the treatment. Overcoming the resistance has primarily focused on developing next-generation targeted therapies based on the molecular mechanisms of resistance or inhibiting the activation of bypass pathways to suppress or reverse the resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!