A non-LTR retrotransposon activates anthocyanin biosynthesis by regulating a MYB transcription factor in Capsicum annuum.

Plant Sci

Department of Plant Science, Plant Genomics & Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Published: October 2019

The flavonoid compound anthocyanin is an important plant metabolite with nutritional and aesthetic value as well as anti-oxidative capacity. MYB transcription factors are key regulators of anthocyanin biosynthesis in plants. In pepper (Capsicum annuum), the CaAn2 gene, encoding an R2R3 MYB transcription factor, regulates anthocyanin biosynthesis. However, no functional study or structural analysis of functional and dysfunctional CaAn2 alleles has been performed. Here, to elucidate the function of CaAn2, we generated transgenic Nicotiana benthamiana and Arabidopsis thaliana plants expressing CaAn2. All of the tissues in these plants were purple. Promoter analysis of CaAn2 in purple C. annuum 'KC00134' plants revealed the insertion of a non-long terminal repeat (LTR) retrotransposon designated Ca-nLTR-A. To determine the promoter activity and functional domain of Ca-nLTR-A, various constructs carrying different domains of Ca-nLTR-A fused with GUS were transformed into N. benthamiana. Promoter analysis showed that the 3' untranslated region (UTR) of the second open reading frame of Ca-nLTR-A is responsible for CaAn2 expression in 'KC00134'. Sequence analysis of Ca-nLTR-A identified transcription factor binding sites known to regulate anthocyanin biosynthesis. This study indicates that insertion of a non-LTR retrotransposon in the promoter may activate expression of CaAn2 by recruiting transcription factors at the 3' UTR and thus provides the first example of exaptation of a non-LTR retrotransposon into a new promoter in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2019.110181DOI Listing

Publication Analysis

Top Keywords

anthocyanin biosynthesis
16
non-ltr retrotransposon
12
myb transcription
12
transcription factor
12
capsicum annuum
8
transcription factors
8
promoter analysis
8
retrotransposon promoter
8
caan2
7
anthocyanin
5

Similar Publications

var. is an ancient relic plant unique to China. However, the typical shade-loving plant is largely exposed to the sun, which poses a major challenge to its conservation.

View Article and Find Full Text PDF

Molecular and Metabolic Regulation of Flavonoid Biosynthesis in Two Varieties of .

Curr Issues Mol Biol

December 2024

College of Landscape Architecture and Horticulture, Yunnan Agricultural University, Kunming 650201, China.

is an important medicinal plant, rich in flavonoid, with various pharmacological activities such as stomachic and antioxidant properties. In this study, we integrated metabolome and transcriptome analyses to reveal metabolite and gene expression profiles of both green (GDd) and purple-red (RDd) of semi-annual and annual stems. A total of 244 flavonoid metabolites, mainly flavones and flavonols, were identified and annotated.

View Article and Find Full Text PDF

Pigmentation in rice is due mainly to the accumulation of anthocyanins. Five color mutant lines, AZ1701, AZ1702, AZ1711, AZ1714, and AZ1715, derived from the sodium azide mutagenesis on the non-pigmented IR64 variety, were applied to study inheritance modes and genes for pigmentation. The mutant line AZ1711, when crossed with IR64, displays pigmentation in various tissues, exhibiting a 3:1 pigmented to non-pigmented ratio in the F progeny, indicating a single dominant locus controlling pigmentation.

View Article and Find Full Text PDF

Plant-derived biostimulants have gained attention in agricultural practices for their potential to enhance crop quality and resilience. In this study, we investigated the effects of applying a maize gluten-derived protein hydrolysate at the soil level in vineyards on berry quality in a table grape variety, the Black Magic early table grapevine, during veraison. Our results demonstrate significant improvements in various parameters 14 days after application, including increased anthocyanin levels, enhanced sugar accumulation, and larger berry diameter while maintaining berry firmness.

View Article and Find Full Text PDF

Enrichment of rice endosperm with anthocyanins by endosperm-specific expression of rice endogenous genes.

Plant Physiol Biochem

December 2024

Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.

A diet rich in anthocyanins can benefit human health against a broad spectrum of human diseases due to the high antioxidant activities of anthocyanins. Enrichment of anthocyanins in the starchy endosperm of rice is an effective solution to provide nutritional food in human diets. However, previous attempts failed to engineer anthocyanin biosynthesis in the rice endosperm by transgenic expression of rice endogenous genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!