Dormancy release, loss of cold hardiness and budbreak are critical aspects of the annual cycle of deciduous perennial plants. Molecular control of these processes is not fully understood, and genotypic variation may be important for climate adaptation. To gain greater understanding of these processes, single-node cuttings from wild (Vitis amurensis, V. riparia) and cultivated Vitis genotypes (V. vinifera 'Cabernet Sauvignon', 'Riesling') were collected from the vineyard during winter and placed under forcing conditions. Cold hardiness was measured daily, and buds were collected for gene expression analysis until budbreak. Wild Vitis genotypes had faster deacclimation and budbreak than V. vinifera. Temperature-sensing related genes were quickly and synchronously differentially expressed in all genotypes. Significant changes in the pattern of expression changes for eight major metabolic and hormone related pathways were seen across all genotypes. Downregulation of ABA synthesis appears to play an important role in loss of cold hardiness and budbreak in all genotypes. This role was validated through an observed halt in cold hardiness loss of 'Riesling' buds treated with exogenous ABA. The gene expression cascade that occurs during deacclimation and budbreak phenology of fast (wild) and slow (cultivated) grapevines appears coordinated and temporally conserved within these phenotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2019.110178 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!