Accelerated Metabolite Levels of Aerobic Glycolysis and the Pentose Phosphate Pathway Are Required for Efficient Replication of Infectious Spleen and Kidney Necrosis Virus in Chinese Perch Brain Cells.

Biomolecules

Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China.

Published: September 2019

Glucose is a main carbon and energy source for virus proliferation and is usually involved in the glycolysis, pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA cycle) pathways. In this study, we investigated the roles of glucose-related metabolic pathways during the replication of infectious spleen and kidney necrosis virus (ISKNV), which has caused serious economic losses in the cultured Chinese perch () industry. We found that ISKNV infection enhanced the metabolic pathways of the PPP and the TCA cycle at the early stage of the ISKNV infection cycle and enhanced the glycolysis pathway at the late stage of the ISKNV infection cycle though the comprehensive analysis of transcriptomics, proteomics, and metabolomics. The advanced results proved that ISKNV replication induced upregulation of aerobic glycolysis at the late stage of ISKNV infection cycle and aerobic glycolysis were required for ISKNV multiplication. In addition, the PPP, providing nucleotide biosynthesis, was also required for ISKNV multiplication. However, the TCA cycle involving glucose was not important and necessary for ISKNV multiplication. The results reported here provide new insights into viral pathogenesis mechanism of metabolic shift, as well as antiviral treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770389PMC
http://dx.doi.org/10.3390/biom9090440DOI Listing

Publication Analysis

Top Keywords

isknv infection
16
aerobic glycolysis
12
tca cycle
12
stage isknv
12
infection cycle
12
isknv multiplication
12
isknv
9
glycolysis pentose
8
pentose phosphate
8
phosphate pathway
8

Similar Publications

Transcriptome-wide dynamics of mA methylation in ISKNV and Siniperca chuatsi cells infected with ISKNV.

BMC Genomics

January 2025

State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Infectious spleen and kidney necrosis virus (ISKNV) is a highly virulent and rapidly transmissible fish virus that poses threats to the aquaculture of a wide variety of freshwater and marine fish. N6-methyladenosine (mA), recognized as a common epigenetic modification of RNA, plays an important regulatory role during viral infection. However, the impact of mA RNA methylation on the pathogenicity of ISKNV remains unexplored.

View Article and Find Full Text PDF

scTRIM44 Positively Regulated Siniperca Chuatsi Rhabdovirus Through RIG-I- and MDA5-Mediated Interferon Signaling.

Viruses

December 2024

Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.

Tripartite Motif-Containing 44 (TRIM44) is responsible for cancers, neurodegenerative diseases, and viral infections. However, the role of TRIM44 (scTRIM44) during viral infection remains unclear. In the present study, we analyzed the molecular characteristics of scTRIM44 and its role in infectious spleen and kidney necrosis virus (ISKNV), largemouth bass virus (LMBV), and Siniperca chuatsi rhabdovirus (SCRV) infection.

View Article and Find Full Text PDF

Rapid, sensitive, and visual detection of mandarin fish ranavirus and infectious spleen and kidney necrosis virus using an RPA-CRISPR/Cas12a system.

Front Microbiol

December 2024

School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China.

Iridoviruses are large cytoplasmic icosahedral viruses that contain dsDNA. Among them, mandarin fish ranavirus (MRV) and infectious spleen and kidney necrosis virus (ISKNV) are particularly notable due to their high contagiousness and pathogenicity. These viruses pose a significant threat to fish aquaculture, resulting in substantial annual economic losses for the fish farming industry.

View Article and Find Full Text PDF

Development and Characterisation of an Immortal Cell Line From Largemouth Bass (Micropterus salmoides) for Viral Studies.

J Fish Dis

December 2024

Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.

Article Synopsis
  • Researchers successfully created an immortal cell line (MSF) from the fin tissue of Largemouth bass, which can be cultured continuously for over 80 passages.
  • The MSF cells, maintained at 28°C and confirmed to be free from mycoplasma contamination, are identified as epithelialoid cells with specific chromosome characteristics.
  • This new cell line is highly susceptible to various viruses affecting Largemouth bass, making it a valuable tool for future studies on gene expression and viral mechanics.
View Article and Find Full Text PDF

The Co-Infection of ISKNV-II and RGNNV Resulting in Mass Mortality of Juvenile Asian Seabass (Lates calcarifer), Zhuhai, Southern China.

J Fish Dis

December 2024

State Key Laboratory of Biocontrol (SKLBC, Guangzhou)/Southern Marine Science and Engineering Guangdong Laboratory (SML, Zhuhai), School of Life Sciences of Sun Yat-Sen University, Guangzhou, China.

Infectious spleen and kidney necrosis virus (ISKNV) and nervous necrosis virus (NNV) are two common and important causative agents in marine-cultured fish. However, high viral loads of both ISKNV and NNV in the same clinical case is unusual. In this study, a mass mortality event of Asian seabass Lates calcarifer juveniles occurred in Zhuhai, the main Asian seabass cultured area in mainland China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!