In this paper, a low-loss, spiral lattice photonic crystal fiber (PCF)-based plasmonic biosensor is proposed for its application in detecting various biomolecules (i.e., sugar, protein, DNA, and mRNA) and biochemicals (i.e., serum and urine). Plasmonic material gold (Au) is employed externally to efficiently generate surface plasmon resonance (SPR) in the outer surface of the PCF. A thin layer of titanium oxide (TiO) is also introduced, which assists in adhering the Au layer to the silica fiber. The sensing performance is investigated using a mode solver based on the finite element method (FEM). Simulation results show a maximum wavelength sensitivity of 23,000 nm/RIU for a bio-samples refractive index (RI) detection range of 1.32-1.40. This sensor also exhibits a very low confinement loss of 0.22 and 2.87 dB/cm for the analyte at 1.32 and 1.40 RI, respectively. Because of the ultra-low propagation loss, the proposed sensor can be fabricated within several centimeters, which reduces the complexity related to splicing, and so on.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749495PMC
http://dx.doi.org/10.3390/s19173794DOI Listing

Publication Analysis

Top Keywords

propagation loss
8
photonic crystal
8
crystal fiber
8
bimetallic-coated low
4
low propagation
4
loss photonic
4
fiber based
4
based plasmonic
4
plasmonic refractive
4
refractive sensor
4

Similar Publications

Microglia-resident immune cells in the central nervous system-undergo morphological and functional changes in response to signals from the local environment and mature into various homeostatic states. However, niche signals underlying microglial differentiation and maturation remain unknown. Here, we show that neuronal micronuclei (MN) transfer to microglia, which is followed by changing microglial characteristics during the postnatal period.

View Article and Find Full Text PDF

A novel helically twisted photonic crystal fiber (PCF) is designed and proposed for sensing toxic gases with refractive indices ranging from 1.00 to 1.08.

View Article and Find Full Text PDF

Solar driven energetic particle precipitation (EPP) is an important factor in polar atmospheric ozone balance and has been linked to ground-level regional climate variability. However, the linking mechanism has remained ambiguous. The observed and simulated ground-level changes start well before the processes from the main candidate, the so-called EPP-indirect effect, would start.

View Article and Find Full Text PDF

A universal strategy for smoothing deceleration in deep graph neural networks.

Neural Netw

January 2025

College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, China. Electronic address:

Graph neural networks (GNNs) have shown great promise in modeling graph-structured data, but the over-smoothing problem restricts their effectiveness in deep layers. Two key weaknesses of existing research on deep GNN models are: (1) ignoring the beneficial aspects of intra-class smoothing while focusing solely on reducing inter-class smoothing, and (2) inefficient computation of residual weights that neglect the influence of neighboring nodes' distributions. To address these weaknesses, we propose a novel Smoothing Deceleration (SD) strategy to reduce the smoothing speed rate of nodes as information propagates between layers, thereby mitigating over-smoothing.

View Article and Find Full Text PDF

Microorganisms, crucial for environmental equilibrium, could be destructive, resulting in detrimental pathophysiology to the human host. Moreover, with the emergence of antibiotic resistance (ABR), the microbial communities pose the century's largest public health challenges in terms of effective treatment strategies. Furthermore, given the large diversity and number of known bacterial strains, describing treatment choices for infected patients using experimental methodologies is time-consuming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!