The dominance of safener can unite with herbicides acquiring the efficient protection of crop and qualifying control of weeds in agricultural fields. In order to solve the crop toxicity problem and exploit the novel potential safener for fenoxaprop--ethyl herbicide, a series of trichloromethyl dichlorobenzene triazole derivatives were designed and synthesized by the principle of active subunit combination. A total of 21 novel substituted trichloromethyl dichlorobenzene triazole compounds were synthesized by substituted aminophenol and amino alcohol derivatives as the starting materials, using cyclization and acylation. All the compounds were unambiguously characterized by IR, H-NMR, C-NMR, and HRMS. A greenhouse bioassay indicated that most of the title compounds could protect wheat from injury caused by fenoxaprop--ethyl at varying degrees, in which compound exhibited excellent safener activity at a concentration of 10 μmol/L and was superior to the commercialized compound fenchlorazole. A structure-activity relationship for the novel compounds was determined, which demonstrated that those compounds containing benzoxazine groups showed better activity than that of oxazole-substituted compounds. Introducing a benzoxazine fragment and electron-donating group to specific positions could improve or maintain the safener activity for wheat against attack by the herbicide fenoxaprop--ethyl. A molecular docking model suggested that a potential mechanism between and fenoxaprop--ethyl is associated with the detoxication of the herbicide. Results from the present work revealed that compound exhibited good crop safener activities toward wheat and could be a promising candidate structure for further research on wheat protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770657PMC
http://dx.doi.org/10.3390/biom9090438DOI Listing

Publication Analysis

Top Keywords

triazole derivatives
8
potential safener
8
trichloromethyl dichlorobenzene
8
dichlorobenzene triazole
8
compound exhibited
8
safener activity
8
safener
6
compounds
6
design synthesis
4
synthesis evaluation
4

Similar Publications

This study presents a novel series of -acylated 1,2,4-triazol-5-amines and 1-pyrazol-5-amines, featuring a pyrazin-2-yl moiety, developed as covalent inhibitors of thrombin. These compounds demonstrated potent inhibitory activity, with derivatives and achieving IC values as low as 0.7 and 0.

View Article and Find Full Text PDF

Metal- and Azide-Free Iodine-Promoted Aerobic Oxidative Cyclization to Trifluoromethylated Triazoles.

J Org Chem

January 2025

College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, China.

A novel metal- and azide-free methodology for the synthesis of trifluoromethylated 1,2,3-triazoles from arylamines with a new 3-bromo-1,1,1-trifluoropropan-2-one derived tosylhydrazone has been developed under mild reaction conditions. The new α-bromo-trifluoromethylated tosylhydrazone reagent was operationally safe and bench-stable from low-cost and readily commercially available starting materials in the iodine-promoted aerobic oxidative cycloaddition reaction with arylamines, affording a variety of trifluoromethylated 1,2,3-triazoles in good to excellent yields.

View Article and Find Full Text PDF

Synthetic Strategies for the Development of Ibuprofen Derivatives: A Classified Study.

Curr Top Med Chem

January 2025

Department of Pharmaceutical Chemistry, Gokaraju Rangaraju College of Pharmacy, Bachupally, Hyderabad 500090, Telangana.

Ibuprofen, a widely used NSAID from the aryl propionic acid class, effectively relieves pain, fever, and inflammation. On prolonged use, it leads to gastrointestinal, hepatic, and renal toxicities, particularly gastrointestinal ulcers. These side effects are largely attributed to the carboxylic acid functional group common to NSAIDs.

View Article and Find Full Text PDF

Modeling, synthesis and cell-based evaluation of pyridine-substituted analogs of CD3254 and fluorinated analogs of CBt-PMN as novel therapeutics.

Bioorg Med Chem

January 2025

School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA. Electronic address:

Six pyridine analogs of (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid-or CD3254 (11)-in addition to two novel analogs of 1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-1H-benzo[d][1,2,3]triazole-5-carboxylic acid (CBt-PMN or 23) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), an FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Treatment with 1 often elicits side-effects by disrupting or provoking other RXR-dependent nuclear receptors and cellular pathways. All analogs were assessed through modeling for their ability to bind RXR and then evaluated in human colon and kidney cells employing an RXR-RXR mammalian-2-hybrid (M2H) system and in an RXRE-controlled transcriptional assay.

View Article and Find Full Text PDF

People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!