Unlike other breast cancer subtypes, patients with triple negative breast cancer (TNBC) have poor outcomes and no effective targeted therapies, leaving an unmet need for therapeutic targets. Efforts to profile these tumors have revealed the PI3K/AKT/mTOR pathway as a potential target. Activation of this pathway also contributes to resistance to anti-cancer agents, including microtubule-targeting agents. Eribulin is one such microtubule-targeting agent that is beneficial in treating taxane and anthracycline refractory breast cancer. In this study, we compared the effect of eribulin on the PI3K/AKT/mTOR pathway with other microtubule-targeting agents in TNBC. We found that the phosphorylation of AKT was suppressed by eribulin, a microtubule depolymerizing agent, but activated by paclitaxel, a microtubule stabilizing agent. The combination of eribulin and everolimus, an mTOR inhibitor, resulted in an increased reduction of p-S6K1 and p-S6, a synergistic inhibition of cell survival in vitro, and an enhanced suppression of tumor growth in two orthotopic mouse models. These findings provide a preclinical foundation for targeting both the microtubule cytoskeleton and the PI3K/AKT/mTOR pathway in the treatment of refractory TNBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770784PMC
http://dx.doi.org/10.3390/cells8091010DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
pi3k/akt/mtor pathway
12
mtor inhibitor
8
triple negative
8
negative breast
8
microtubule-targeting agents
8
eribulin
5
eribulin synergistically
4
synergistically increases
4
increases anti-tumor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!