Antibodies against the HIV-1 2F5 epitope are known as one of the most powerful and broadly protective anti-HIV antibodies. Therefore, vaccine strategies that include the 2F5 epitope in their formulation require a robust method to detect specific anti-2F5 antibody production by B cells. Towards this goal, we have biotinylated a previously reported computer-designed protein carrying the HIV-1 2F5 epitope aiming the further development of a platform to detect human B-cells expressing anti-2F5 antibodies through flow cytometry. Biophysical and immunological properties of our devised protein were characterized by computer simulation and experimental methods. Biotinylation did not affect folding and improved protein stability and solubility. The biotinylated protein exhibited similar binding affinity trends compared to its unbiotinylated counterpart and was recognized by anti-HIV-1 2F5 antibodies expressed on the surface of patient-derived peripheral blood mononuclear cells. Moreover, we present a high affinity marker for the identification of epitope-specific B cells that can be used to measure the efficacy of vaccine strategies based on the HIV-1 envelope protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887850 | PMC |
http://dx.doi.org/10.1016/j.jmgm.2019.107442 | DOI Listing |
Microb Cell Fact
February 2024
School of Science and Technology, Life Science Center, Örebro University, Örebro, Sweden.
Background: Mucosal vaccines have the potential to induce protective immune responses at the sites of infection. Applying CRISPR/Cas9 editing, we aimed to develop a probiotic-based vaccine candidate expressing the HIV-1 envelope membrane-proximal external region (MPER) on the surface of E. coli Nissle 1917.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2024
Instituto Biofisika (CSIC, UPV/EHU) and Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), PO Box 644, 48080 Bilbao, Spain. Electronic address:
The fusion peptide (FP) and the Trp-rich membrane proximal external region (MPER) display membrane activity during HIV-1 fusion. These domains are highly conserved in the envelope glycoprotein (Env) and, consequently, antibodies targeting these regions block entry of divergent HIV strains and isolates into target cells. With the aim of recovering concurrent responses against the membrane-active Env domains, we have produced hybrid peptides that connect FP and MPER sequences via flexible aminohexanoic acid tethers, and tested their potential as immunogens.
View Article and Find Full Text PDFPathogens
March 2023
State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
The membrane-proximal external region (MPER) is a promising HIV-1 vaccine target owing to its linear neutralizing epitopes and highly conserved amino acids. Here, we explored the neutralization sensitivity and investigated the MPER sequences in a chronic HIV-1 infected patient with neutralizing activity against the MPER. Using single-genome amplification (SGA), 50 full-length HIV-1 envelope glycoprotein () genes were isolated from the patient's plasma at two time points (2006 and 2009).
View Article and Find Full Text PDFJ Phys Chem B
December 2022
Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG38064-200, Brazil.
The computer-designed Top7 served as a scaffold to produce immunoreactive proteins by grafting of the 2F5 HIV-1 antibody epitope (Top7-2F5) followed by biotinylation (Top7-2F5-biotin). The resulting nonimmunoglobulin affinity proteins were effective in inducing and detecting the HIV-1 antibody. However, the grafted Top7-2F5 design led to protein aggregation, as opposed to the soluble biotinylated Top7-2F5-biotin.
View Article and Find Full Text PDFJ Phys Chem B
September 2022
Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil.
Broadly neutralizing antibodies against HIV-1 are rare with the 2F5 antibody being one of the most protective. Insertion of an antibody epitope into a stable and small protein scaffold overcomes many of the obstacles found to produce antibodies. However, the design leads to grafting of epitopes that may cause protein aggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!