Efficient pretreatment of industrial estate wastewater for biodegradability enhancement using a micro-electrolysis-circulatory system.

J Environ Manage

State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.

Published: November 2019

A self-made micro-electrolysis-circulatory system with the mixture regime of an upflow bed and reactor was tested for the pretreatment of industrial estate wastewater with a low ratio of biological to chemical oxygen demand (BOD/COD) at room temperature, 1:1 vol ratio of sponge iron (SFe)/granular activated carbon (GAC), and an intermittent process in aeration and discharge. The system efficiency was evaluated in view of the effects of various processes (hydraulic retention time (HRT), fillers/wastewater ratio (S/L) and aeration). COD reduction of about 51% was obtained for industrial estate wastewater at an S/L ratio of 25%, refluence rate of 16 L/h, HRT of 24 h, and aeration of 60 L/h as the optimal conditions. The considerable change in the calculated BOD/COD ratio, from 0.07 to 0.49, showed favorable application of the micro-electrolysis-circulatory system for the reductive and oxidative degradation of organic pollutants to enhance wastewater biodegradability. The reusability of the SFe was also investigated after three successive runs. On the basis of the results of Fe leaching, HRT, S/L ratio, scanning electron microscopy observation, and X-ray photoelectron spectroscopic analysis, the corrosion products facilitated by the inherent porosity of SFe played a significant role due to different oxygen conditions in the surface and internal layers. One result from the removal of organic pollutants dominated by the galvanic cell reactions between SFe and GAC was observed, and the integration coagulation in the bulk solution was mainly attributed to the leaching of Fe. The innovative approach described in this study provides a promising and economical technology for pretreatment of industrial wastewater prior to a biological process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2019.109492DOI Listing

Publication Analysis

Top Keywords

pretreatment industrial
12
industrial estate
12
estate wastewater
12
micro-electrolysis-circulatory system
12
wastewater biodegradability
8
s/l ratio
8
organic pollutants
8
ratio
6
wastewater
5
efficient pretreatment
4

Similar Publications

Preparation of agar polysaccharides and biological activities and relationships of agar-derived oligosaccharides and monosaccharides: A review.

Int J Biol Macromol

January 2025

The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China. Electronic address:

Agar is one of the three major colloidal linear polysaccharides obtained from marine seaweeds, specifically red macroalgae (Rhodophyta). It has garnered significant attention owing to its diverse industrial applications, potential for bioethanol production, and the physiological activities of its derived saccharides. This review delves into the preparation and degradation processes of agar, focusing on both physical and chemical pretreatments, as well as subsequent hydrolysis through acid and enzymatic methods.

View Article and Find Full Text PDF

The increasing demand for magnetic iron oxide nanoparticles (IONPs) in biomedicine necessitates efficient and scalable production methods. Thermal decomposition offers excellent tailoring of the particle properties but its discontinuous batch-operation is restricting scale-up and industrial application. To overcome these challenges, several studies have demonstrated semi-continuous thermal decomposition by slowly injecting the precursor, though only half of them produce magnetite IONPs and even fewer use iron oleate precursors.

View Article and Find Full Text PDF

Industrialization of military textiles faces many challenges and some requirements such as durability, protection and suitability for hostile environment must be provided. Herein, fluorescent protective cotton with ultraviolet radiation (UVR)-protection and antimicrobial property was currently prepared via the immobilization of lanthanide-metal organic framework (Ln-MOF). Cotton fabrics were primarily activated via cationization process with 3-Chloro-2-hydroxypropyltrimethyl ammonium chloride to obtain the cationized cotton (Q-cotton).

View Article and Find Full Text PDF

Development of Citric-Acid-Modified Cellulose Monolith for Enriching Glycopeptides.

Anal Chem

January 2025

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.

Prior to mass spectrometry (MS) analysis, pretreatment of low-abundance glycopeptides is vital for identifying protein glycosylation. In this study, we fabricated an environmentally friendly citric-acid-modified cellulose monolith (CCM) characterized by a coral-like porous structure and high-density hydrophilic groups using a thermally induced phase separation (TIPS) method. The CCM production leverages biomass resources, specifically cellulose and citric acid, utilizing TIPS to synthesize continuous porous materials through a straightforward heating and cooling process of polymer solutions.

View Article and Find Full Text PDF

Extraction of Natural-Based Raw Materials Towards the Production of Sustainable Man-Made Organic Fibres.

Polymers (Basel)

December 2024

Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal.

Bioresources have been gaining popularity due to their abundance, renewability, and recyclability. Nevertheless, given their diverse composition and complex hierarchical structures, these bio-based sources must be carefully processed to effectively extract valuable raw polymeric materials suitable for producing man-made organic fibres. This review will first highlight the most relevant bio-based sources, with a particular focus on promising unconventional biomass sources (terrestrial vegetables, aquatic vegetables, fungi, and insects), as well as agroforestry and industrial biowaste (food, paper/wood, and textile).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!