A once-monthly GLP-1 receptor agonist for treatment of diabetic cats.

Domest Anim Endocrinol

ProLynx, San Francisco, CA, USA. Electronic address:

Published: January 2020

There is growing evidence that peptidic glucagon-like peptide-1 receptor agonists (GLP-1RA), such as exenatide, may provide useful therapeutic options for treatment of feline diabetes. However, because such drugs are administered subcutaneously, it is desirable that they be long-acting and not require frequent injections. We have developed a chemically controlled delivery system to support half-life extension of peptidic therapeutics. Here, the peptide is covalently attached to hydrogel microspheres by a self-cleaving β-eliminative linker; after subcutaneous injection of the microspheres, the peptide is slowly released from the depot to the systemic circulation. Using this technology, we developed a delivery system that supports once-monthly administration of a stable exenatide analog, [Gln]exenatide, in rodents (Schneider, et al, ACS Chem Biol 12, 2107 to 2116, 2017). The purposes of the present study were a) to demonstrate pharmacokinetic and pharmacodynamic similarities of the deamidation-sensitive GLP-1RA exenatide and the closely related, more stable [Gln]exenatide and b) to develop a long-acting GLP-1RA in cats. The results show that exenatide and [Gln]exenatide injected intravenously or subcutaneously at 10 μg/kg have nearly identical pharmacokinetics in the cat-both having elimination half-lives of ∼40 min-but subcutaneously administered [Gln]exenatide has superior bioavailability-93% for [Gln]exenatide vs 52% for exenatide. The results also show that exenatide and [Gln]exenatide have similar insulinotropic activities in the cat during a high-dose intravenous glucose tolerance test; they increased the area under the curve (AUC) for insulin to a similar extent but had no effect on glucose AUC. Finally, subcutaneous injection of a microsphere-[Gln]exenatide conjugate containing an appropriate self-cleaving linker in the cat provides plasma [Gln]exenatide with a half-life of about 40 d vs 40 min with the injected free peptide. Hence, the large body of information available for exenatide can be used to facilitate clinical development of [Gln]exenatide as a treatment for feline diabetes, and the microsphere-[Gln]exenatide conjugate is quite suitable for once-monthly subcutaneous administration of the peptide in the cat.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.domaniend.2019.07.001DOI Listing

Publication Analysis

Top Keywords

glp-1ra exenatide
8
treatment feline
8
feline diabetes
8
delivery system
8
subcutaneous injection
8
[gln]exenatide
8
exenatide [gln]exenatide
8
microsphere-[gln]exenatide conjugate
8
exenatide
7
once-monthly glp-1
4

Similar Publications

Introduction: The aim of this study is to use observational methods to evaluate reliability of evidence generated by a study of the effect of glucagon-like peptide 1 receptor agonists (GLP-1RA) on chronic lower respiratory disease (CLRD) outcomes among Type-2 diabetes mellitus (T2DM) patients.

Research Design And Methods: We independently reproduced a study comparing effects of GLP-1RA versus dipeptidyl peptidase-4 inhibitors (DPP4-i) on CLRD outcomes among patients with T2DM and prior CLRD. We reproduced inputs and outputs using the original study data (national administrative claims) and evaluated the robustness of results in comparison to alternate design/analysis decisions.

View Article and Find Full Text PDF

Background And Aims: Type 2 diabetes mellitus (T2DM) is usually complicated by cardiovascular diseases, hyperglycemia, and obesity, which worsen the outcome for the patient. Since recent evidence underlines the epigenetic role of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the management of these comorbidities, this study compared the effects of these agents, namely liraglutide, semaglutide, dulaglutide, and exenatide, on miRNA regulation in the management of T2DM.

Results: GLP-1RAs modify the expression of miRNAs involved in endothelial function, sugar metabolism, and adipogenesis, including but not limited to miR-27b, miR-130a, and miR-210.

View Article and Find Full Text PDF

Diabetes mellitus, particularly Type 2 diabetes (T2DM) remains a significant concern globally with an increase in prevalence reported in recent years. If diabetes is not managed properly, it can lead to several complications including an increased risk of cardiovascular disease (CVD). Cardiovascular complications such as coronary heart disease, peripheral artery disease, and stroke are common among individuals with diabetes.

View Article and Find Full Text PDF

Introduction: Congenital and acquired damage to hypothalamic nuclei or neuronal circuits controlling satiety and energy expenditure results in hypothalamic obesity (HO). To date, successful weight loss and satiety has only been achieved in a limited number of affected patients across multiple drug trials. Glucagon-like peptide-1 (GLP-1) acts via central pathways that are independent from the hypothalamus to induce satiety.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) affects approximately half of the 500 million people with type 2 diabetes worldwide. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) receptors in the peripheral nervous system may be a suitable target for DPN treatment. Fourteen participants were consecutively recruited after being prescribed either semaglutide or dulaglutide as part of standard clinical care for type 2 diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!