Mercury species in the nests and bodies of soil-feeding termites, Silvestritermes spp. (Termitidae, Syntermitinae), in French Guiana.

Environ Pollut

Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES, Paris), 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France.

Published: November 2019

Mercury pollution is currently a major public health concern, given the adverse effects of mercury on wildlife and humans. Soil plays an essential role in speciation of mercury and its global cycling, while being a habitat for a wide range of terrestrial fauna. Soil fauna, primarily soil-feeding taxa that are in intimate contact with soil pollutants are key contributors in the cycling of soil mercury and might provide relevant indications about soil pollution. We studied the enrichment of various mercury species in the nests and bodies of soil-feeding termites Silvestritermes spp. in French Guiana. Soil-feeding termites are the only social insects using soil as both shelter and food and are major decomposers of organic matter in neotropical forests. Nests of S. minutus were depleted in total and mobile mercury compared to nearby soil. In contrast, they were enriched 17 times in methylmercury. The highest concentrations of methylmercury were found in body of both studied termite species, with mean bioconcentration factors of 58 for S. minutus and 179 for S. holmgreni relative to the soil. The assessment of the body distribution of methylmercury in S. minutus showed concentrations of 221 ng g for the guts and even higher for the gut-free carcasses (683 ng g), suggesting that methylmercury is not confined to the gut where it was likely produced, but rather stored in various tissues. This enrichment in the most toxic form of Hg in termites may be of concern on termite predators and the higher levels in the food chain that may be endangered through prey-to-predator transfers and bioaccumulation. Soil-feeding termites appear to be promising candidates as bio-indicators of mercury pollution in soils of neotropical rainforest ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.113064DOI Listing

Publication Analysis

Top Keywords

soil-feeding termites
16
mercury
8
mercury species
8
species nests
8
nests bodies
8
bodies soil-feeding
8
termites silvestritermes
8
silvestritermes spp
8
french guiana
8
mercury pollution
8

Similar Publications

Some essential information on gut bacterial profiles and their unique contributions to food digestion in wood-feeding termites (WFT) and soil-feeding termites (SFT) is still inadequate. The feeding type of termites is hypothesized to influence their gut bacterial composition and its functionality in degrading lignocellulose or other organic chemicals. This could potentially provide alternative approaches for the degradation of some recalcitrant environmental chemicals.

View Article and Find Full Text PDF

Lignocellulosic biomass (LCB) in the form of agricultural, forestry, and agro-industrial wastes is globally generated in large volumes every year. The chemical components of LCB render them a substrate valuable for biofuel production. It is hard to dissolve LCB resources for biofuel production because the lignin, cellulose, and hemicellulose parts stick together rigidly.

View Article and Find Full Text PDF

Resource adaptation drives the size-complexity rule in termites.

Proc Biol Sci

January 2024

Natural Resources Program, Federal University of Roraima, Av. Nova Iorque, Aeroporto, Boa Vista - RR, CEP: 69.304-000, Brazil.

The size-complexity rule posits that the evolution of larger cooperative groups should favour more division of labour. Examples include more cell types in larger multicellular organisms, and more polymorphic castes in larger eusocial colonies. However, a correlation between division of labour and group size may reflect a shared response of both traits to resource availability and/or profitability.

View Article and Find Full Text PDF

The neotropical Apicotermitinae is a common and widespread clade of mostly soil-feeding soldierless termites. With few exceptions, species of this group were originally assigned to the genus Müller, 1873. The application of internal worker morphology coupled with genetic sequencing has recently shed light on the true diversity of this subfamily.

View Article and Find Full Text PDF

Termites are key decomposers of dead plant material involved in the organic matter recycling process in warm terrestrial ecosystems. Due to their prominent role as urban pests of timber, research efforts have been directed toward biocontrol strategies aimed to use pathogens in their nest. However, one of the most fascinating aspects of termites is their defense strategies that prevent the growth of detrimental microbiological strains in their nests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!