For a more insightful investigation into the specificity of bacterial heparinase I, a series of structurally well-defined heparin oligosaccharides was synthesized using a highly efficient chemoenzymatic strategy. Apart from the primary cleavage site, five glycosidic linkages of oligosaccharides with varying modifications to obtain secondary cleavage sites were degraded by a high concentration of heparinase I. The reactivity of linkages toward heparinase I was not entirely dependent on the 2-O-sulfated iduronic acid being cleaved or the neighboring 6-O-sulfated glucosamine residues, but it was dependent on higher degrees of sulfation of oligosaccharides and indispensable N-substituted glucosamine adjacent to the cleavable linkage. Moreover, the enzyme demonstrated less preferential cleavage toward glycosidic linkages containing glucuronic acid than those containing iduronic acid of the counterpart oligosaccharides. Biolayer interferometry revealed differences in reactivity that are not completely consistent with different affinities of substrates to enzyme. Our study presented accurate information on the cleavage promiscuity of heparinase I that is crucial for heparin depolymerization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.08.260 | DOI Listing |
Biochem Biophys Rep
March 2025
Genis hf, Reykjavik, Iceland.
The chitinase-like protein YKL-40 (CHI3L1) has been implicated in the pathophysiology of inflammation and cancer. Recent studies highlight the growing interest in targeting and blocking the activity of YKL-40 to treat cancer. Some of those targeting-strategies have been developed to directly block the heparin-affinity of YKL-40 with promising results.
View Article and Find Full Text PDFBioorg Med Chem
February 2025
Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy.
Am J Med Sci
November 2024
Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
Carbohydr Polym
January 2025
Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, 210094, China. Electronic address:
J Chromatogr A
November 2024
College of Pharmaceutical Sciences and Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu 215021, China. Electronic address:
Heparin is the most widely used anticoagulant in clinical practice, with enoxaparin being one of the most important low molecular weight heparins (LMWHs). In this study, an antithrombin III (ATIII) affinity column was used. Enoxaparin and its oligosaccharides of varying sizes, prepared using preparative size exclusion chromatography (SEC), were fractionated through the ATIII affinity column.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!