Fast stomatal reactions enable plants to successfully cope with a constantly changing environment yet there is an ongoing debate on the stomatal regulation mechanisms in basal plant groups. We measured stomatal morphological parameters in 29 fern and allied species from temperate to tropical biomes and two outgroup angiosperm species. Stomatal dynamic responses to environmental drivers were measured in 16 ferns and the two angiosperms using a gas-exchange system. Principal components analyses were used to further reveal the structure-function relationships in stomata. We show a > 10-fold variation for stomatal opening delays and 20-fold variation for stomatal closing delays in ferns. Across species, stomatal responses to vapor pressure deficit (VPD) were the fastest, while light and [CO ] responses were slower. In most cases the outgroup species' reaction speeds to changes in environmental variables were similar to those of ferns. Correlations between stomatal response rate and size were apparent for stomatal opening in light and low [CO ] while not evident for closing reactions and changes in VPD. No correlations between stomatal density and response speed were observed. Together, this study demonstrates different mechanisms controlling stomatal reactions in ferns at different environmental stimuli, which should be considered in future studies relating stomatal morphology and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.16159 | DOI Listing |
Plant Biol (Stuttg)
January 2025
Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.
Plants with the C photosynthetic pathway can withstand water stress better than plants with C metabolism. However, it is unclear whether C photosynthesis can be preliminarily activated in droughted cotton leaves, and if this contributes to increase in water use efficiency (WUE). An upland cotton (Gossypium hirsutum L.
View Article and Find Full Text PDFFront Genet
January 2025
Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
Introduction: Sorghum bicolor: widely cultivated in Asia and Africa, faces increasing challenges from climate change, specifically from abiotic stresses like drought and salinity. This study evaluates how different sorghum genotypes respond to separate and combined stresses of drought and salinity.
Methods: Carried out with three replications using a randomized complete block design, the experiment measured biochemical and physiological parameters, including stomatal conductance, chlorophyll content, and antioxidant enzyme activities.
Environ Sci Technol
January 2025
State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
Vegetation assimilation of atmospheric gaseous elemental mercury (GEM) represents the largest dry deposition pathway in global terrestrial ecosystems. This study investigated Hg accumulation mechanisms in deciduous broadleaves and evergreen needles, focusing on how ecophysiological strategies─reflected by δC, δO, leaf mass per area, and leaf dry matter content-mediated Hg accumulation. Results showed that deciduous leaves exhibited higher total Hg (THg) concentrations and accumulation rates (THg), which were 85.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Background: NITRATE TRANSPORTER 1.1 (NRT1.1) functions as a dual affinity nitrate transceptor regulated by phosphorylation at threonine residue 101 (T101).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
HHMI, The University of Texas at Austin, Austin, TX 78712.
Dynamic control of signaling events requires swift regulation of receptors at an active state. By focusing on the Arabidopsis ERECTA (ER) receptor kinase, which perceives peptide ligands to control multiple developmental processes, we report a mechanism preventing inappropriate receptor activity. The ER C-terminal tail (ER_CT) functions as an autoinhibitory domain: Its removal confers higher kinase activity and hyperactivity during inflorescence and stomatal development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!