Necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are secreted by several phytopathogenic microorganisms. They trigger necrosis in various eudicot plants upon binding to plant sphingolipid glycosylinositol phosphorylceramides (GIPC). Interestingly, HaNLP3 from the obligate biotroph oomycete Hyaloperonospora arabidopsidis does not induce necrosis. We determined the crystal structure of HaNLP3 and showed that it adopts the NLP fold. However, the conformations of the loops surrounding the GIPC headgroup-binding cavity differ from those of cytotoxic Pythium aphanidermatum NLPPya. Essential dynamics extracted from μs-long molecular dynamics (MD) simulations reveals a limited conformational plasticity of the GIPC-binding cavity in HaNLP3 relative to toxic NLPs. This likely precludes HaNLP3 binding to GIPCs, which is the underlying reason for the lack of toxicity. This study reveals that mutations at key protein regions cause a switch between non-toxic and toxic phenotypes within the same protein scaffold. Altogether, these data provide evidence that protein flexibility is a distinguishing trait of toxic NLPs and highlight structural determinants for a potential functional diversification of non-toxic NLPs utilized by biotrophic plant pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743777PMC
http://dx.doi.org/10.1371/journal.ppat.1007951DOI Listing

Publication Analysis

Top Keywords

nep1-like proteins
8
toxic nlps
8
molecular basis
4
basis functional
4
functional diversity
4
diversity microbial
4
microbial nep1-like
4
proteins necrosis
4
necrosis ethylene-inducing
4
ethylene-inducing peptide
4

Similar Publications

Differences in Behavior During Early Nectarine Infection Among Main spp. Causing Brown Rot.

Phytopathology

January 2025

Centro de Investigaciones Biologicas, Departament of Cellular and Molecular Biology, Ramiro de Maeztu, 9, Madrid, Madrid, Madrid, Spain, 28040.

Brown rot is a disease that affects stone and pome fruit crops worldwide. It is caused by fungal members of the genus , mainly , and . This study presents evidence that, despite having a very similar battery of Cell Wall Degrading Enzymes (CWDEs), the three species behave differently during the early stages of infection, suggesting differences at the regulatory level, which could also explain the differences in host preference among the three species.

View Article and Find Full Text PDF

Interaction of an Oomycete Nep1-like Cytolysin with Natural and Plant Cell-Mimicking Membranes.

J Membr Biol

December 2024

Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.

Article Synopsis
  • Plants face attacks from pathogens that use effectors like necrosis- and ethylene-inducing peptide-1-like proteins (NLPs) to invade and damage them.
  • NLPs, known for causing cell death and tissue damage, disrupt the plant's plasma membrane through unique mechanisms that create small, temporary membrane ruptures.
  • Recent research utilized confocal fluorescence microscopy to analyze how NLP interacts with model plant cell membranes, revealing that NLP's permeabilization effects depend on its concentration and time of exposure, and confirming its binding and structural changes on these membranes.
View Article and Find Full Text PDF

What lies behind the large genome of .

Front Fungal Biol

October 2024

LGMM, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Brazil.

is the etiological agent of anthracnose disease in common bean ( L.), noted for its ability to cause serious damage and significant pathogenic variability. This study reveals the features of the high-quality genome of .

View Article and Find Full Text PDF
Article Synopsis
  • Hemibiotrophic pathogens are crucial in agriculture as they cause significant damage to plants during their unique infection process, transitioning from a biotrophic to a necrotrophic phase, with unclear mechanisms involved in this shift.
  • Researchers sequenced the genome of a specific oomycete responsible for root rot in chickpeas and analyzed its behavior during different infection stages to uncover small secreted proteins that may control the biotrophic to necrotrophic switch.
  • Findings revealed that despite having a smaller number of certain effector proteins, many proteins were actively regulated during infection, providing insights into factors influencing the timing of the BNS phase and advancing our understanding of plant-pathogen interactions in quantitatively resistant crops.
View Article and Find Full Text PDF

Revealing the effector-host molecular interactions is crucial for understanding the host immunity against Plasmopara viticola and devising innovative disease management strategies. As a pathogenic oomycete causing grapevine downy mildew, Plasmopara viticola employs various effectors to manipulate the defense systems of host plants. One of these P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!