Background: Population suppression through mass-release of Aedes aegypti males carrying dominant-lethal transgenes has been demonstrated in the field. Where population dynamics show negative density-dependence, suppression can be enhanced if lethality occurs after the density-dependent (i.e. larval) stage. Existing molecular tools have limited current examples of such Genetic Pest Management (GPM) systems to achieving this through engineering 'cell-autonomous effectors' i.e. where the expressed deleterious protein is restricted to the cells in which it is expressed-usually under the control of the regulatory elements (e.g. promoter regions) used to build the system. This limits the flexibility of these technologies as regulatory regions with useful spatial, temporal or sex-specific expression patterns may only be employed if the cells they direct expression in are simultaneously sensitive to existing effectors, and also precludes the targeting of extracellular regions such as cell-surface receptors. Expanding the toolset to 'non-cell autonomous' effectors would significantly reduce these limitations.

Methodology/principal Findings: We sought to engineer female-specific, late-acting lethality through employing the Ae. aegypti VitellogeninA1 promoter to drive blood-meal-inducible, fat-body specific expression of tTAV. Initial attempts using pro-apoptotic effectors gave no evident phenotype, potentially due to the lower sensitivity of terminally-differentiated fat-body cells to programmed-death signals. Subsequently, we dissociated the temporal and spatial expression of this system by engineering a novel synthetic effector (Scorpion neurotoxin-TetO-gp67.AaHIT) designed to be secreted out of the tissue in which it was expressed (fat-body) and then affect cells elsewhere (neuro-muscular junctions). This resulted in a striking, temporary-paralysis phenotype after blood-feeding.

Conclusions/significance: These results are significant in demonstrating for the first time an engineered 'action at a distance' phenotype in a non-model pest insect. The potential to dissociate temporal and spatial expression patterns of useful endogenous regulatory elements will extend to a variety of other pest insects and effectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6719823PMC
http://dx.doi.org/10.1371/journal.pntd.0007579DOI Listing

Publication Analysis

Top Keywords

aedes aegypti
8
regulatory elements
8
expression patterns
8
temporal spatial
8
spatial expression
8
expression
5
engineered action
4
action distance
4
distance blood-meal-inducible
4
blood-meal-inducible paralysis
4

Similar Publications

Susceptibility to organophosphate insecticides in Aedes aegypti (Diptera: Culicidae) from northern Colombia and associated resistance mechanisms.

Parasit Vectors

January 2025

Facultad de Ciencias de la Salud, Centro de Investigación en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla, Colombia.

Background: Aedes aegypti is the primary vector of dengue, chikungunya, and Zika viruses in Colombia. Various insecticides, including pyrethroid, organophosphate, and carbamate insecticides; growth regulators; and biological insecticides, such as Bacillus thuringiensis var. israelensis, have been used to control Ae.

View Article and Find Full Text PDF

Background Objectives: Temephos is being used regularly to control immature of vector borne diseases in various states in India.

Methods: World Health Organization method was used to evaluate larval susceptibility status of Aedes aegypti and Anopheles stephensi against temephos in Dehradun of Uttarakhand.

Results: The results of the study revealed that the larval mortality in different localities ranged from 67.

View Article and Find Full Text PDF

The mosquito evolves two types of prophenoloxidases with diversified functions.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China.

Insect phenoloxidase, presented as an inactive precursor prophenoloxidase (PPO) in hemolymph, catalyzes melanin formation, which is involved in wound healing, pathogen killing, reversible oxygen collection during insect respiration, and cuticle and eggshell formation. Mosquitoes possess 9 to 16 PPO members across different genera, a number that is more than that found in other dipteran insects. However, the reasons for the redundancy of these PPOs and whether they have distinct biochemical properties and physiological functions remain unclear.

View Article and Find Full Text PDF

Vector-borne diseases pose significant threats to both human and animal health, including wildlife, particularly in vulnerable island ecosystems like the Galapagos Islands. This study examines the mosquito community composition around domestic dogs and Galapagos sea lion rookeries across four islands: San Cristobal, Isabela, Santa Cruz, and Floreana. Using BG-Sentinel traps, a total of 292 mosquitoes were collected, identifying three species: Culex quinquefasciatus, Aedes aegypti, and A.

View Article and Find Full Text PDF

Orthoflaviviruses are positive-sense single-stranded RNA viruses that hijack host proteins to promote their own replication. Zika virus (ZIKV) is infamous among orthoflaviviruses for its association with severe congenital birth defects, notably microcephaly. We previously mapped ZIKV-host protein interactions and identified the interaction between ZIKV non-structural protein 4A (NS4A) and host microcephaly protein ankyrin repeat and LEM domain-containing 2 (ANKLE2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!