Introduction: Glial fibrillary acidic protein (GFAP) immunoglobulin G is a recently discovered biomarker of an autoimmune central nervous system disorder characterized by a steroid-responsive meningoencephalomyelitis.

Case Report: A 63-year-old man with rheumatoid arthritis on etanercept presented with steroid-responsive subacute encephalopathy and foot drop. Brain and sural nerve biopsies demonstrated a T-cell perivascular infiltrate. Cerebrospinal fluid studies 18 months into the course of the illness demonstrated a GFAP antibody on mouse tissue immunofluorescence confirmed by cell-based assay. The patient was treated with steroids and cyclophosphamide leading to resolution of his symptoms.

Conclusion: This case expands on the previously reported cases of GFAP immunoglobulin G autoimmunity by describing an associated inflammatory large fiber peripheral neuropathy.

Download full-text PDF

Source
http://dx.doi.org/10.1097/NRL.0000000000000243DOI Listing

Publication Analysis

Top Keywords

glial fibrillary
8
fibrillary acidic
8
acidic protein
8
protein gfap
8
rheumatoid arthritis
8
gfap immunoglobulin
8
gfap
4
gfap autoimmunity
4
autoimmunity setting
4
setting seropositive
4

Similar Publications

Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits.

View Article and Find Full Text PDF

Traumatic brain injuries (TBIs) are a leading cause of mortality and morbidity, particularly in forensic settings where determining the cause of death and timing of injury is critical. Glial fibrillary acidic protein (GFAP), a biomarker specific to astrocytes, has emerged as a valuable tool in post-mortem analyses of TBI. A PRISMA-based literature search included studies examining GFAP in human post-mortem samples such as brain tissue, cerebrospinal fluid (CSF), serum, and urine.

View Article and Find Full Text PDF

Clavulanic acid prevents paclitaxel-induced neuropathic pain through a systemic and central anti-inflammatory effect in mice.

Neurotherapeutics

January 2025

Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico. Electronic address:

Paclitaxel (PCX) based treatments, commonly used to treat breast, ovarian and lung cancers, have the highest incidence of chemotherapy-induced neuropathic pain, affecting from 38 to 94 ​% of patients. Unfortunately, analgesic treatments are not always effective for PCX-induced neuropathic pain (PINP). This study aimed to evaluate the antinociceptive effect of clavulanic acid (CLAV), a clinically used β-lactam molecule, in both therapeutic and preventive contexts in mice with PINP.

View Article and Find Full Text PDF

Introduction: Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice.

View Article and Find Full Text PDF

Early-Life Adversity Predicts Markers of Aging-Related Neuroinflammation, Neurodegeneration, and Cognitive Impairment in Women.

Ann Neurol

January 2025

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany.

Objective: Despite the overwhelming evidence for profound and longstanding effects of early-life stress (ELS) on inflammation, brain structure, and molecular aging, its impact on human brain aging and risk for neurodegenerative disease is poorly understood. We examined the impact of ELS severity in interaction with age on blood-based markers of neuroinflammation and neurodegeneration, brain volumes, and cognitive function in middle-aged women.

Methods: We recruited 179 women (aged 30-60 years) with and without ELS exposure before the onset of puberty.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!