Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The adhesion of carbon nanotube (CNT) forests to their growth substrate is a critical concern for many applications. Here, we measured the delamination force of CNT forest micropillars using in situ scanning electron microscopy (SEM) tensile testing. A flat tip with epoxy adhesive first established contact with the top surface of freestanding CNT pillars and then pulled the pillars in displacement-controlled tension until delamination was observed. An average delamination stress of 6.1 MPa was measured, based on the full pillar cross-sectional area, and detachment was observed to occur between catalyst particles and the growth substrate. Finite element simulations of CNT forest delamination show that force and strain are heterogeneously distributed among CNTs during tensile loading and that CNTs progressively lose adhesion with increased displacement. Based on combined experiments and simulations, an adhesion strength of approximately 350 MPa was estimated between each CNT and the substrate. These findings provide important insight into CNT applications such as thermal interfaces, mechanical sensors, and structural composites while also suggesting a potential upper limit of tensile forces allowed during CNT forest synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b09979 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!