Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intermolecular interactions are difficult to model, especially in systems formed by multiple interactions. Such is the case of caffeine-phenol. Structural data has been extracted by using mass-resolved excitation spectroscopy and double resonance techniques. Then the predictions of seven different computational methods have been explored to discover structural and energetic discrepancies between them that may even result in different assignments of the system. The results presented herein highlight the difficulty of constructing functionals to model systems with several competing interactions, and raise awareness of problems with assignments of complex systems with limited experimental information that rely exclusively on energetic data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201903478 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!