All-inorganic perovskites are considered to be one of the most appealing research hotspots in the field of perovskite photovoltaics in the past 3 years due to their superior thermal stability compared to their organic-inorganic hybrid counterparts. The power-conversion efficiency has reached 17.06% and the number of important publications is ever increasing. Here, the progress of inorganic perovskites is systematically highlighted, covering materials design, preparation of high-quality perovskite films, and avoidance of phase instabilities. Inorganic perovskites, nanocrystals, quantum dots, and lead-free compounds are discussed and the corresponding device performances are reviewed, which have been realized on both rigid and flexible substrates. Methods for stabilization of the cubic phase of low-bandgap inorganic perovskites are emphasized, which is a prerequisite for highly efficient and stable solar cells. In addition, energy loss mechanisms both in the bulk of the perovskite and at the interfaces of perovskite and charge selective layers are unraveled. Reported approaches to reduce these charge-carrier recombination losses are summarized and complemented by methods proposed from our side. Finally, the potential of inorganic perovskites as stable absorbers is assessed, which opens up new perspectives toward the commercialization of inorganic perovskite solar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201902851 | DOI Listing |
Small
January 2025
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, India.
The structural and electronic changes are investigated in a 3D hybrid perovskite, methylhydrazinium lead chloride (MHyPbCl) from a host/guest perspective as it transitions from a highly polar to less polar phase upon cooling, using first-principles calculations. The two phases vary structurally in the guest (MHy) orientation and the two differently distorted host (lead halide) layers. These findings highlight the critical role of guest reorientation in reducing host distortion at high temperatures, making the former the primary order parameter for the transition, a notable contrast to the case of other hybrid perovskites.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune - 411008, India.
Organic-inorganic hybrid ferroelectric compounds of the halobismuthate family have emerged as a focal point of research owing to their reduced toxicity and distinctive optical characteristics. This study presents a novel ammonium hybrid perovskite, [BPMBDMA]·[Bi2Br9], which exhibits both ferro- and piezoelectric properties and crystallizes in the polar noncentrosymmetric 2 space group. The nonlinear optical (NLO) activity of [BPMBDMA]·[Bi2Br9] was corroborated through second harmonic generation measurements evidencing its noncentrosymmetric structure, which was further substantiated by piezoresponse force microscopy analyses.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China.
Metal halide perovskites and their derivatives are gaining significant attention as photoluminescent materials due to their exceptional light-emitting properties. However, most research has concentrated on electroluminescence and photoluminescence, there remains a substantial gap in the exploration of mechanoluminescence (ML) properties in perovskites, making this field largely uncharted. ML is an ancient and intriguing luminescent phenomenon that occurs when a material is subjected to mechanical forces.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China Agricultural University, College of Materials and Energy, CHINA.
Carbon-based perovskite solar cells (C-PSCs) have the advantages of high stability and low cost, but their mean efficiency has become an obstacle to commercialization. Defects, which are widely distributed on the surface and bulk of films, are an important factor in C-PSCs for low efficiency. The conventional post-treatment method through forming a low-dimensional (LD) perovskite layer usually fails in manipulating the bulk defects.
View Article and Find Full Text PDFACS Nano
January 2025
IBM Research Europe─Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
Highly ordered nanocrystal (NC) assemblies, namely, superlattices (SLs), have been investigated as materials for optical and optoelectronic devices due to their unique properties based on interactions among neighboring NCs. In particular, lead halide perovskite NC SLs have attracted significant attention owing to their extraordinary optical characteristics of individual NCs and collective emission processes like superfluorescence (SF). So far, the primary method for preparing perovskite NC SLs has been the drying-mediated self-assembly method, in which the colloidal NCs spontaneously assemble into SLs during solvent evaporation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!